
Transaction Interface (TRI) Specification

Transaction Interface (TRI)

Specification
Version 1.1 Edition 7.20141001

Updated October 25, 2014
Distributed with Package openss7-1.1.7.20141001

Copyright c© 2008-2009 Monavacon Limited
All Rights Reserved.

Abstract:

This document is a Specification containing technical details concerning the implemen-
tation of the Transaction Interface (TRI) for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Transaction
Interface (TRI). It provides abstraction of the Transaction Handling (TR) interface to
these components as well as providing a basis for Transaction Handling control for
other Transaction Handling protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Copyright c© 2008-2009 Monavacon Limited
Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock

All Rights Reserved.

Unauthorized distribution or duplication is prohibited.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled [GNU Free Documentation License], page 131.

Permission to use, copy and distribute this documentation without modification, for any purpose
and without fee or royalty is hereby granted, provided that both the above copyright notice and
this permission notice appears in all copies and that the name of OpenSS7 Corporation not be
used in advertising or publicity pertaining to distribution of this documentation or its contents
without specific, written prior permission. OpenSS7 Corporation makes no representation about
the suitability of this documentation for any purpose. It is provided “as is” without express or
implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that
the contents of the document are suitable for any purpose, or that the implementation of such
contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with any use of this
document or the performance or implementation of the contents thereof.

http://www.openss7.com/
http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

i

Short Contents

Preface . 3

1 Introduction . 7

2 The Transaction Sub-Layer . 9

3 TRI Services Definition . 13

4 TRI Primitives . 23

5 Diagnostics Requirements . 73

6 Transaction Service Interface Sequence of Primitives 75

Addendum for ITU-T Conformance . 77

Addendum for ANSI Conformance . 83

Addendum for ETSI Conformance . 89

A Mapping TRI Primitives . 91

B State/Event Tables . 97

C Primitive Precedence Tables . 99

D TRI Header File Listing . 101

Glossary . 115

Acronyms . 117

References . 119

Licenses . 121

Index . 139

iii

Table of Contents

Preface . 3
Notice . 3
Abstract . 3

Purpose . 3
Intent . 3
Audience . 3

Revision History . 3
Version Control . 4

ISO 9000 Compliance . 4
Disclaimer . 4
U.S. Government Restricted Rights . 4

Acknowledgements . 4

1 Introduction . 7
1.1 Related Documentation . 7

1.1.1 Role . 7
1.2 Definitions, Acronyms, and Abbreviations . 7

2 The Transaction Sub-Layer . 9
2.1 Model of the TRI . 9
2.2 TRI Services . 10

2.2.1 COTS . 10
2.2.2 CLTS . 10
2.2.3 Local Management . 11

3 TRI Services Definition . 13
3.1 Local Management Services Definition . 13

3.1.1 Transaction Information Reporting Service . 13
3.1.2 TR User Bind Service . 13
3.1.3 TR User Unbind Service . 14
3.1.4 Receipt Acknowledgement Service . 14
3.1.5 Options Mangement Service . 14
3.1.6 Error Acknowledgement Service . 15

3.2 Connection-Oriented Mode Services Definition . 15
3.2.1 Transaction Initiation Phase . 16

3.2.1.1 User Primitives Successful Transaction Establishment 16
3.2.1.2 Provider Primitives Successful Transaction Establishment . . 17

3.2.2 Transaction Data Transfer Phase . 17
3.2.2.1 Primitives for Data Transfer . 17

3.2.3 Transaction Termination Phase . 18
3.2.3.1 Primitives for Transaction Termination . 18

3.3 Connectionless Mode Services Definition . 20
3.3.1 Request and Response Primitives . 20

iv Transaction Interface (TRI)

4 TRI Primitives . 23
4.1 Management Primitives . 24

4.1.1 Transaction Information . 24
4.1.1.1 Transaction Information Request . 24
4.1.1.2 Transaction Information Acknowledgement 26

4.1.2 Transaction Protocol Address Management . 28
4.1.2.1 Transaction Bind Request . 28
4.1.2.2 Transaction Bind Acknowledgement . 30
4.1.2.3 Transaction Unbind Request . 32
4.1.2.4 Transaction Protocol Address Request . 33
4.1.2.5 Transaction Protocol Address Acknowledgement 35

4.1.3 Transaction Options Management . 37
4.1.3.1 Transaction Options Management Request 37
4.1.3.2 Transaction Options Management Acknowledgement 39

4.1.4 Transaction Error Management . 42
4.1.4.1 Transaction Successful Receipt Acknowledgement 42
4.1.4.2 Transaction Error Acknowledgement . 43

4.2 Connection-Oriented Mode Primitives . 45
4.2.1 Transaction Establishment . 45

4.2.1.1 Transaction Begin Request . 45
4.2.1.2 Transaction Begin Indication . 48
4.2.1.3 Transaction Begin Response . 50
4.2.1.4 Transaction Begin Confirmation . 53

4.2.2 Transaction Data Transfer . 55
4.2.2.1 Transaction Continue Request . 55
4.2.2.2 Transaction Continue Indication . 58

4.2.3 Transaction Termination . 60
4.2.3.1 Transaction End Request . 60
4.2.3.2 Transaction End Indication . 62
4.2.3.3 Transaction User Abort Request . 64
4.2.3.4 Transaction Abort Indication . 66

4.3 Connectionless Mode Primitives . 68
4.3.1 Transaction Phase . 68

4.3.1.1 Transaction Unidirectional Request . 68
4.3.1.2 Transaction Unidirectional Indication . 70
4.3.1.3 Transaction Notice Indication . 72

5 Diagnostics Requirements . 73
5.1 Non-Fatal Errors . 73
5.2 Fatal Errors . 73

6 Transaction Service Interface Sequence of Primitives . . 75
6.1 Rules for State Maintenance . 75

6.1.1 General Rules for State Maintenace . 75
6.1.2 Connection-Oriented Transaction Service Rules for State

Maintenace . 75
6.2 Rules for Precedence of Primitives on a Stream . 76

6.2.1 General Rules for Precedence of Primitives . 76
6.2.2 Connection-Oriented Transaction Service Rules for Precedence of

Primitives . 76
6.3 Rules for Flushing Queues . 76

6.3.1 General Rules for Flushing Queues . 76

v

6.3.2 Connection-Oriented Transaction Service Rules for Flushing Queues
. 76

Addendum for ITU-T Conformance . 77
Quality of Service: Model and Description . 77

QoS Overview . 77
TRI Primitives: Rules for ITU-T Q.771 Conformance . 77

Addressing . 77
Address Format . 77

Options . 77
TCAP Level Options . 77
SCCP Level Options . 77

Supported Services . 78
Common Transaction Services . 78

Information Service . 78
Address service . 80
Bind Service . 80
Options Management Service . 80

Connection-Oriented Transaction Services . 80
Transaction Begin . 80
Transaction Continue . 81
Transaction End . 81

Connectionless Transaction Services . 81

Addendum for ANSI Conformance . 83
Quality of Service: Model and Description . 83

QoS Overview . 83
TRI Primitives: Rules for ANSI T1.114 Conformance . 83

Addressing . 83
Address Format . 83

Options . 83
TCAP Level Options . 83
SCCP Level Options . 83

Supported Services . 84
Common Transaction Services . 84

Information Service . 84
Address service . 86
Bind Service . 86
Options Management Service . 86

Connection-Oriented Transaction Services . 86
Transaction Begin . 86
Transaction Continue . 87
Transaction End . 87

Connectionless Transaction Services . 87

vi Transaction Interface (TRI)

Addendum for ETSI Conformance . 89
ETSI Quality of Service Model and Description . 89

QoS Overview . 89
TRI Primitives: Rules for ETSI ETS 300 287 Conformance 89

Addressing . 89
Address Format . 89

Options . 89
TCAP Level Options . 89
SCCP Level Options . 89

ETSI Supported Services . 89
Common Transaction Services . 89

Information service . 89
Address service . 89
Bind Service . 89
Options Management Service . 89

Connection-Oriented Transaction Services . 90
Transaction Begin . 90
Transaction Continue . 90
Transaction End . 90

Connectionless Transaction Services . 90

Appendix A Mapping TRI Primitives . 91
A.1 Mapping TRI Primitives to ITU-T Q.771 . 92
A.2 Mapping TRI Primitives to ANSI T1.114 . 93
A.3 Mapping TRI Primitives to ITU-T X.219 . 94

A.3.1 State Mapping . 94
A.3.2 Primitive Mapping . 94

A.3.2.1 A-ASSOCIATE . 94
A.3.2.2 A-RELEASE . 94
A.3.2.3 A-ABORT . 94
A.3.2.4 A-P-ABORT . 94
A.3.2.5 A-UNIT-DATA . 94

A.3.3 Parameter Mapping . 94

Appendix B State/Event Tables . 97

Appendix C Primitive Precedence Tables 99

Appendix D TRI Header File Listing 101

Glossary . 115

Acronyms . 117

References . 119

vii

Licenses . 121
GNU Affero General Public License . 121

Preamble . 121
How to Apply These Terms to Your New Programs 130

GNU Free Documentation License . 131

Index . 139

Transaction Interface (TRI) Table of Contents

List of Figures

Figure 2.1: Model of the TRI . 9
Figure 3.1: Sequence of Primitives – Transaction Information Reporting Service 13
Figure 3.2: Sequence of Primitives – TR User Bind Service . 14
Figure 3.3: Sequence of Primitives – TR User Unbind Receipt Acknowledgement Services . . . 14
Figure 3.4: Sequence of Primitives – Options Management Service . 15
Figure 3.5: Sequence of Primitives – Error Acknowledgement Service . 15
Figure 3.6: Sequence of Primitives – Successful Transaction Initiation . 17
Figure 3.7: Sequence of Primitives – Transaction Response Token Value Determination 17
Figure 3.8: Sequence of Primitives – Data Transfer . 18
Figure 3.9: Sequence of Primitives – TR User Invoked Termination . 19
Figure 3.10: Sequence of Primitives – Simultaneous TR User Invoked Termination 19
Figure 3.11: Sequence of Primitives – TR Provider Invoked Termination 19
Figure 3.12: Sequence of Primitives – Simultaneous TR User and Provider Invoked

Termination . 19
Figure 3.13: Sequence of Primitives – TR User Rejection of a Transaction Initiation Attempt

. 20
Figure 3.14: Sequence of Primitives – TR Provider Rejection of a Transaction Initiation

Attempt . 20
Figure 3.15: Sequence of Primitives – Connectionless Mode Data Transfer 21
Figure 3.16: Sequence of Primitives – CLTS Error Indication Service . 21

2014-10-25 1

List of Tables

2 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Preface

Preface

Notice

Software in this document and related software is released under the AGPL (see [GNU Affero General
Public License], page 121). Please note, however, that there are different licensing terms for some
of the manual package and some of the documentation. Consult permission notices contained in the
documentation of those components for more information.

This document is released under the FDL (see [GNU Free Documentation License], page 131) with
no invariant sections, no front-cover texts and no back-cover texts.

Abstract

This document is a Specification containing technical details concerning the implementation of the
Transaction Interface (TRI) for OpenSS7. It contains recommendations on software architecture as
well as platform and system applicability of the Transaction Interface (TRI).

This document specifies a Transaction Interface (TRI) Specification in support of the OpenSS7
Transaction Handling (TR) protocol stacks. It provides abstraction of the Transaction interface to
these components as well as providing a basis for Transaction control for other Transaction protocols.

Purpose

The purpose of this document is to provide technical documentation of the Transaction Interface
(TRI). This document is intended to be included with the OpenSS7 STREAMS software package
released by OpenSS7 Corporation. It is intended to assist software developers, maintainers and
users of the Transaction Interface (TRI) with understanding the software architecture and technical
interfaces that are made available in the software package.

Intent

It is the intent of this document that it act as the primary source of information concerning the Trans-
action Interface (TRI). This document is intended to provide information for writers of OpenSS7
Transaction Interface (TRI) applications as well as writers of OpenSS7 Transaction Interface (TRI)
Users.

Audience

The audience for this document is software developers, maintainers and users and integrators of the
Transaction Interface (TRI). The target audience is developers and users of the OpenSS7 SS7 stack.

Revision History

Take care that you are working with a current version of this documentation: you will not be
notified of updates. To ensure that you are working with a current version, check the OpenSS7
Project website for a current version.

A current version of this specification is normally distributed with the OpenSS7 package, openss7-
1.1.7.20141001.1

1 http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

2014-10-25 3

http://www.openss7.org/
http://www.openss7.org/
http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

Preface

Version Control

Although the author has attempted to ensure that the information in this document is complete and
correct, neither the Author nor OpenSS7 Corporation will take any responsibility in it. OpenSS7
Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document,
minor changes may be made prior to products conforming to the interfaces being made available.
OpenSS7 Corporation reserves the right to revise this software and documentation for any reason,
including but not limited to, conformity with standards promulgated by various agencies, utilization
of advances in the state of the technical arts, or the reflection of changes in the design of any
techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under
no obligation to provide any feature listed herein.

$Log: tri.texi,v $

Revision 1.1.2.2 2011-02-07 02:21:47 brian

- updated manuals

Revision 1.1.2.1 2009-06-21 10:57:29 brian

- added files to new distro

ISO 9000 Compliance

Only the TEX, texinfo, or roff source for this maual is controlled. An opaque (printed, postscript or
portable document format) version of this manual is a UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infrincement, or title; that
the contents of the manual are suitable for any purpose, or that the implementation of such con-
tents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action or
contract, negligence or other tortious action, arising out of or in connection with any use of this
documentation or the performance or implementation of the contents thereof.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following
provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is clas-
sified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement
to the Federal Aquisition Regulations ("DFARS") (or any successor regulations) and the Govern-
ment is acquiring only the license rights granded herein (the license rights customarily provided to
non-Government users). If the Software is supplied to any unit or agency of the Government other
than DoD, it is classified as "Restricted Computer Software" and the Government’s rights in the
Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any
successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplerment
to the FAR (or any successor regulations).

Acknowledgements

The OpenSS7 Project was funded in part by:

4 Version 1.1 Rel. 7.20141001

http://www.openss7.org/

Transaction Interface (TRI) Preface

• Monavacon Limited

• OpenSS7 Corporation

Thanks to the subscribers to and sponsors of The OpenSS7 Project. Without their support, open
software like this would not be possible.

As with most open source projects, this project would not have been possible without the valiant
efforts and productive software of the Free Software Foundation, the Linux Kernel Community, and
the open source software movement at large.

2014-10-25 5

http://www.monavacon.com/
http://www.openss7.com/
http://www.openss7.org/
http://www.fsf.org/
http://www.kernel.org/

Transaction Interface (TRI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Transaction Ca-
pabilities Application Part (TCAP) Transaction (TR) Sub-Layer. The Transaction Interface (TRI)
enables the user of a transaction sub-layer service to access and use any of a variety of conforming
transaction providers without specific knowledge of the provider’s protocol. The service interface is
designed to support any transaction protocol. This interface only specifies access to transaction sub-
layer services providers, and does not address issues concerning transaction sub-layer management,
protocol performance, and performance analysis tools.

The specification assumes that the reader is familiar with the ISO reference model terminology,
ISO/ITU-T transaction service definitions (ROSE, ACSE, TCAP), and STREAMS.

1.1 Related Documentation

— ITU-T Recommendation X.200 (White Book) — ISO/IEC 7498-1:1994

— ITU-T Recommendation X.219 (White Book) — ISO/IEC

— ITU-T Recommendation X.229 (White Book) — ISO/IEC

— ITU-T Recommendation X.217 (White Book) — ISO/IEC 8649 : 1996

— ITU-T Recommendation X.227 (White Book) — ISO/IEC 8650-1 : 1995

— ITU-T Recommendation X.237 (White Book) — ISO/IEC 10035-1 : 1995

— ITU-T Recommendation Q.771 (White Book)

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the service provided by the Association Control
Service Element (ACSE) for Open Systems Interconnect for ITU-T Applications as specified in ITU-
T Recommendation X.217 (ISO/IEC 8649). It is also intended to support the Transaction Sub-layer
provided by the Transaction Capabilities Application Part (TCAP) for Signalling System Number
7 (SS7) as specified in ITU-T Recommendation Q.771. These specifications are targeted for use by
developers and testers of protocol modules that require transaction sub-layer service.1

1.2 Definitions, Acronyms, and Abbreviations

Originating TR User
A TR-User that initiates a transaction.

Destination TR User
A TR-User with whom an originating TR user wishes to establish a transaction.

ISO International Organization for Standardization

TR User Kernel level protocol or user level application that is accessing the services of the
transaction sub-layer.

TR Provider
Transaction sub-layer entity/entities that provide/s the services of the transaction in-
terface.

1 For an alternative interface, see Section “Introduction” in Transaction Component Interface, or Section
“Introduction” in Using XTI for TCAP.

2014-10-25 7

Chapter 1: Introduction

TRI Transaction Interface

TIDU Transaction Interface Data Unit

TSDU Transaction Service Data Unit

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS A communication services development facility first available with UNIX System V
Release 3

8 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) The Transaction Sub-Layer

2 The Transaction Sub-Layer

The Transaction Sub-Layer provides the means to manage the association of TR-User into transac-
tions. It is responsible for the routing and management of transaction associations between TR-user
entities.

2.1 Model of the TRI

The TRI defines the services provided by the transaction sub-layer to the transaction-user at the
boundary between the Transaction Component (TC) Sub-Layer and the Transaction (TR) Sub-
Layer in the model presented in ITU-T Recommendation Q.771. The interface consists of a set of
primitives defined as STREAMS messages that provide access to the transaction sub-layer services,
and are transferred between the TR user entity and the TR provider. These primitives are of two
types: ones that originate from the TR user, and others that originate from the TR provider, or
respond to an event of the TR provider. The primitives that originate from the TR provider are
either confirmations of a request or are indications to the NS user that the event has occurred.
Figure 2.1 shows the model of the TRI.� �

TR User

TR Provider

TRI

Indication/Confirmation
Primitives

Request/Response
Primitives

Full Duplex Connection

Figure 2.1: Model of the TRI
 	
The TRI allows the TR provider to be configured with any transaction sub-layer user (such as
the Transaction Component (TC) Sub-Layer) that also conforms to the TRI. A transaction sub-
layer user can also be a user program that conforms to the TRI and accesses the TR provider via
putmsg(2s) and getmsg(2s) system calls.

STREAMS messages that are used to communicate transaction service primitives between the trans-
action user and the transaction provider may have one of the following formats:

1. A M_PROTO message block followed by zero or more M_DATA message blocks. The M_PROTO

message block contains the type of service primitive and all relevant arguments associated with
the primitive. The M_DATA blocks contain user data associated with the service primitive.

2. One M_PCPROTO message block containing the type of service primitive and all the relevant
arguments associated with the primitive.

3. One or more M_DATA message blocks containing user data.

2014-10-25 9

http://www.openss7.org/man2html?putmsg(2s)
http://www.openss7.org/man2html?getmsg(2s)

Chapter 2: The Transaction Sub-Layer

The following sections describe the service primitives which define both connection-mode and
connectionless-mode service.

For both types of service, two types of primitives exist: primitives that originate from the service
user and primitives that originate from the service provider. The primitives that originate from the
service user make requests to the service provider or response to an event of the service provider.
The primitive that originate from the service provider are either confirmations of a request or
are indications to the service user that an event has occurred. The primitive types along with
the mapping of those primitives to the STREAMS message types and the service primitives of the
ISO/IEC xxxxx and service definitions are listed in Chapter 4 [TRI Primitives], page 23. The format
of these primitives and the rules governing the use of them are described in Section 4.1 [Management
Primitives], page 24, Section 4.2 [Connection-Oriented Mode Primitives], page 45, and Section 4.3
[Connectionless Mode Primitives], page 68.

2.2 TRI Services

The features of the TRI are defined in terms of the services provided by the service provider, and
the individual primitives that may flow between the service user and the service provider.

The services supported by the TRI are based on two distinct modes of communication, connection-
mode transaction service (COTS) and connectionless transaction service (CLTS). Also, the TRI
supports services for local management.

2.2.1 COTS

The main features of the connection mode communication are:

a. It is virtual circuit oriented;

b. it provides transfer of data via a pre-established path; and,

c. it provides reliable data transfer.1

There are three phases to each instance of communication: Transaction Establishment, Data Trans-
fer, and Transaction Release. Units of data arrive at the destination in the same order as they
departed their source and the data is protected against duplication or loss of data units within some
specified quality of service.

2.2.2 CLTS

The main features of the connectionless mode communication are:

a. It is datagram oriented;

b. it provides transfer of data in self contained units;

c. there is no logical relationship between these units of data; and,

d. it is unreliable.

Connectionless mode communication has no separate phases. Each unit of data is transmitted from
source to destination independently, appropriate addressing information is included with each unit
of data. As the units of data are transmitted independently from source to destination, there are,
in general, no guarantees of proper sequence and completeness of the data stream.

1 That is, it supports TCAP

operation classes 1, 2, and 3; ROSE operation classes 1, 2, 3 and 4.

10 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) The Transaction Sub-Layer

2.2.3 Local Management

The TRI specifications also define a set of local management functions that apply to both COTS
and CLTS modes of communication. These services have local significance only.

Table 1 and Table 2 summarizes the TRI service primitives by their state and service.

STATE SERVICE PRIMITIVES

Local Management Information

Reporting

TR_INFO_REQ, TR_INFO_ACK,

TR_ERROR_ACK

Bind TR_BIND_REQ, TR_BIND_ACK,

TR_UNBIND_ACK, TR_OK_ACK,

TR_ERROR_ACK

Options Management TR_OPTMGMT_REQ, TR_OK_ACK,

TR_ERROR_ACK

Transaction

Establishment

Transaction Begin TR_BEGIN_REQ, TR_BEGIN_IND,

TR_BEGIN_RES, TR_BEGIN_CON,

TR_TOKEN_REQ, TR_TOKEN_ACK,

TR_OK_ACK, TR_ERROR_ACK

Transaction Data

Transfer

Transaction Continue TR_CONT_REQ, TR_CONT_IND

Transaction Release Transaction End TR_END_REQ, TR_END_IND

Transaction Abort TR_ABORT_REQ, TR_ABORT_IND

Table 1. Service Primitives for Connection Mode Transaction

STATE SERVICE PRIMITIVES

Local Management Information

Reporting

TR_INFO_REQ, TR_INFO_ACK,

TR_ERROR_ACK

Bind TR_BIND_REQ, TR_BIND_ACK,

TR_UNBIND_ACK, TR_OK_ACK,

TR_ERROR_ACK

Options Management TR_OPTMGMT_REQ, TR_OK_ACK,

TR_ERROR_ACK

Transaction Unitdata Transaction

Unidirectional

TR_UNI_REQ, TR_UNI_IND,

TR_NOTICE_IND

Table 2. Service Primitives for Connectionless Mode Transaction

2014-10-25 11

Transaction Interface (TRI) TRI Services Definition

3 TRI Services Definition

This section describes the services of the TRI primitives. Time-sequence diagrams1 that illustrate
the sequence of primitives are used. The format of the primitives will be defined later in this
document.

3.1 Local Management Services Definition

The services defined in this section are outside the scope of the international standards. These
services apply to both connection-mode as well as connectionless modes of communication. They
are involved for the initialization/de-initialization of a stream connected to the TR provider. They
are also used to manage options supported by the TR provider and to report information on the
supported parameter values.

3.1.1 Transaction Information Reporting Service

This service provides information on the options supported by the TR provider.

• TR_INFO_REQ: This primitive request that the TR provider returns the values of all the sup-
ported protocol parameters. This request may be invoked during any phase.

• TR_INFO_ACK: This primitive is in response to the TR INFO REQ primitive and returns the
values of the supported protocol parameters to the TR user.

The sequence of primitives for transaction information management is shown in Figure 3.1.� �
TR_INFO_REQ

TR_INFO_ACK

Figure 3.1: Sequence of Primitives – Transaction Information Reporting Service
 	
3.1.2 TR User Bind Service

This service allows an originating address to be associated with a stream. It allows the TR user to
negotiate the number of transaction begin indications that can remain unacknowledged for that TR
user (a transaction begin indication is considered unacknowledged while it is awaiting a corresponding
transaction response or abort request from the TR user). This service also defines a mechanism that
allows a stream (bound to the address of the TR user) to be reserved to handle incoming transactions
only. This stream is referred to as the listener stream.

• TR_BIND_REQ: This primitive request that the TR user be bound to a particular originating
address, and negotiate the number of allowable outstanding transaction indications for that
address.

• TR_BIND_ACK: This primitive is in response to the TR_BIND_REQ primitive and indicates to the
user that the specified TR user has been bound to a protocol address.

1 Conventions for the time-sequence diagrams are defined in ITU-T X.210, ISO/IEC 10731:1994.

2014-10-25 13

Chapter 3: TRI Services Definition

The sequence of primitives for the TR user bind service is shown in Figure 3.2.� �
TR_BIND_REQ

TR_BIND_ACK

Figure 3.2: Sequence of Primitives – TR User Bind Service
 	
3.1.3 TR User Unbind Service

This service allows the TR user to be unbound from a protocol address.

• TR_UNBIND_REQ: This primitive requests that the TR user be unbound from the protocol address
it had previously been bound to.

The sequence of primitives for the TR user unbind service is shown in Figure 3.3.� �
TR_UNBIND_REQ

TR_OK_ACK

Figure 3.3: Sequence of Primitives – TR User Unbind Receipt Acknowledgement Services
 	
3.1.4 Receipt Acknowledgement Service

• TR_OK_ACK: This primitive indicates to the TR user that the previous TR user originated
primitive was received successfully by the TR provider.

An example showing the sequence of primitives for successful receive acknowledgement is depicted
in Figure 3.3.

3.1.5 Options Mangement Service

This service allows the TR user to manage the QOS parameter values associated with the TR
provider.

• TR_OPTMGMT_REQ: This primitive allows the TR user to select default values for QOS parameters
within the range supported by the TR provider, and to indicate the default selection of return
option.

Figure 3.4 shows the sequence of primitives for transaction options management.

14 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Services Definition

� �
TR_OPTMGMT_REQ

TR_OK_ACK

Figure 3.4: Sequence of Primitives – Options Management Service
 	
3.1.6 Error Acknowledgement Service

• TR_ERROR_ACK: This primitive indicates to the TR user that a non-fatal error has occurred in
the last TR user originated request or response primitive (listed in Figure 3.5) on the stream.

Figure 3.5 shows the sequence of primitives for the error management primitive.� �
REQ/RES Primitive *

TR_ERROR_ACK

* = TR_BIND_REQ
TR_UNBIND_REQ
TR_OPTMGMT_REQ
TR_BEGIN_REQ
TR_BEGIN_RES
TR_END_REQ
TR_ABORT_REQ

Figure 3.5: Sequence of Primitives – Error Acknowledgement Service
 	
3.2 Connection-Oriented Mode Services Definition

This section describes the required transaction service primitives that define the connection mode
interface.

The queue model for connection-oriented services are discussed in more detail in ITU-T X.217 and
ITU-T Q.771.

The queue model represents the operation of a transaction association in the abstract by a pair of
queues linking two transaction users. There is one queue for each direction of data flow. Each queue
represents a flow control function in one direction of transfer. The ability of a user to add objects to
a queue will be determined by the behaviour of the user removing objects from that queue, and the
state of the queue. The pair of queues is considered to be available for each potential transaction
association. Objects that are entered or removed from the queue are either as a result of interactions
at the two transaction addresses, or as the result of TR provider initiatives.

• A queue is empty until a transaction object has been entered and can be returned to this state,
with loss of its contents, by the TR provider.

• Objects may be entered into a queue as a result of the actions of the source TR user, subject
to control by the TR provider.

• Objects may also be entered into a queue by the TR provider.

• Objects are removed from the queue under the control of the TR user in the same order as they
were entered except:

2014-10-25 15

Chapter 3: TRI Services Definition

1. If the object is of type defined to be able to advance ahead of the preceding object (however,
no object is defined to be able to advance ahead of another object of the same type), or

2. If the following object is defined to be destructive with respect to the preceding object on
the queue. If necessary, the last object on the queue will be deleted to allow a destructive
object to be entered - they will therefore always be added to the queue. For example,
“abort” objects are defined to be destructive with respect to all other objects.

Table 3 shows the ordering relationships among the queue model objects.

Object X BEGIN CONT END ABORT

Object Y

BEGIN N/A − − DES

CONT N/A − − DES

END N/A N/A − −

AA Indicates that Object X is defined to be able to advance ahead of pre-

ceding Object Y.

DES Indicates that Object X is defined to be destructive with respect to the

preceding Object Y.

− Indicates that Object X is neither destructive with respect to Object Y,

nor able to advance ahead of Object Y.

N/A Indicates that Object X will not occur in a position succeeding Object

Y in a valid state of a queue.

Table 3. Ordering Relationships Between Queue Model Objects

3.2.1 Transaction Initiation Phase

A pair of queues is associated with a transaction association between two transaction users when
the TR provider receives a TR_BEGIN_REQ primitive at one of the TR users resulting in a begin
object being entered into the queue. The queues will remain associated with the transaction until
a TR_END_REQ or TR_ABORT_REQ primitive (resulting in an end or abort object) is either entered or
removed from a queue. Similarly, in the queue from the destination TR user, objects can be entered
into the queue only after the begin object associated with the TR_BEGIN_RES has been entered into
the queue. Alternatively, the destination TR user can enter an end or abort object into the queue
instead of the begin object to terminate the transaction.

The transaction establishment procedure will fail if the TR provider is unable to establish a transac-
tion association, or if the destination TR user is unable to accept the TR_BEGIN_IND (see Transaction
Termination primitive definition in Section 4.2.3.2 [Transaction End Indication], page 62).

3.2.1.1 User Primitives Successful Transaction Establishment

The following user primitives support COTS Phase I (Transaction Establishment) services:

• TR_BEGIN_REQ: This primitive requests that the TR provider form a transaction association
with the specified destination TR user.

• TR_BEGIN_RES: This primitive requests that the TR provider accept a previous transaction
indication.

16 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Services Definition

3.2.1.2 Provider Primitives Successful Transaction Establishment

The following provider primitives support COTS Phase I (Transaction Establishment) services:

• TR_BEGIN_IND: This primitive indicates to the TR user that a transaction association request
has been made by a user at the specified source address.

• TR_BEGIN_CON: This primitive indicates to the TR user that a transaction initiation request
has been confirmed on the specified responding address.

The sequence of primitives in a successful transaction initiation is defined by the time sequence
diagrams as shown in Figure 3.6.� �

TR_BEGIN_REQ

TR_BEGIN_IND

TR_OK_ACKTR_BEGIN_CON

TR_BEGIN_RES

Figure 3.6: Sequence of Primitives – Successful Transaction Initiation
 	
The sequence of primitives for the transaction initiation response token value determination is shown
in Figure 3.7 (procedures for transaction initiation response token value determination are discussed
in Section 4.1.2.1 [Transaction Bind Request], page 28, and Section 4.1.2.2 [Transaction Bind Ac-
knowledgement], page 30).� �

(with TOKEN_REQUEST set)

(with TOKEN_value)

TR_BIND_REQ

TR_BIND_ACK

Figure 3.7: Sequence of Primitives – Transaction Response Token Value Determination
 	
3.2.2 Transaction Data Transfer Phase

Flow control on the transaction association is done by management of the queue capacity, and by
allowing objects of certain types to be inserted to the queues, as shown in Table 4.

3.2.2.1 Primitives for Data Transfer

The following primitives support COTS Phase II (Transaction Data Transfer) services:

• TR_CONT_REQ: This primitive requests that the TR provider transfer the specified user data.

• TR_CONT_IND: This primitive indicates to the TR user that this message contains user data.

2014-10-25 17

Chapter 3: TRI Services Definition

Figure 3.8 shows the sequence of primitives for successful user data transfer. The sequence of
primitives may remain incomplete if a TR_END_REQ, TR_END_IND, TR_ABORT_REQ, or TR_ABORT_IND
primitive occurs.� �

TR_CONT_REQ

TR_CONT_IND

Figure 3.8: Sequence of Primitives – Data Transfer
 	

3.2.3 Transaction Termination Phase

The transaction association procedure is initialized by insertion of an end or abort object (associated
with a TR_END_REQ or TR_ABORT_REQ) into the queue. As shown in Table?, the termination procedure
is destructive with respect to other objects in the queue, and eventually results in the emptying of
queues and termination of the transaction association.

The sequence of primitives depends on the origin of the termination action. The sequence may be:

1. invoked by on TR user, with a request from that TR user leading to an indication to the other;

2. invoked by both TR users, with a request from each of the TR users;

3. invoked by the TR provider, with an indication to each of the TR users;

4. invoked independently by one TR user and the TR provider, with a request from the originating
TR user and an indication to the other.

3.2.3.1 Primitives for Transaction Termination

The following primitives support CONS Phase III (Transaction Termination) services:

• TR_END_REQ: This primitive requests that the TR provider deny an outstanding request for a
transaction association or normal termination of an existing transaction.

• TR_ABORT_REQ: This primitive requests that the TR provider deny an outstanding request for
a transaction association or abnormal termination of an existing transaction.

• TR_END_IND: This primitive indicates to the TR user that either a request for transaction
initiation has been denied or an existing transaction has been terminated normally.

• TR_ABORT_IND: This primitive indicates to the TR user that either a request for transaction
initiation has been denied or an existing transaction has been terminated abnormally.

The sequence of primitives are shown in the time sequence diagrams in the figures that follow:

18 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Services Definition

� �
TR_ABORT_REQ

TR_OK_ACK

TR_ABORT_IND

Figure 3.9: Sequence of Primitives – TR User Invoked Termination
 	
� �

TR_ABORT_REQ TR_ABORT_REQ

TR_OK_ACKTR_OK_ACK

Figure 3.10: Sequence of Primitives – Simultaneous TR User Invoked Termination
 	
� �

TR_ABORT_IND TR_ABORT_IND

Figure 3.11: Sequence of Primitives – TR Provider Invoked Termination
 	
� �

TR_ABORT_REQ

TR_OK_ACK TR_ABORT_IND

Figure 3.12: Sequence of Primitives – Simultaneous TR User and Provider Invoked Termination
 	
A TR user may reject a transaction initiation attempt by issuing a TR_ABORT_REQ. The origina-
tor parameter in the TR_ABORT_REQ will indicate TR user invoked termination. The sequence of
primitives is shown in Figure 3.13.

2014-10-25 19

Chapter 3: TRI Services Definition

� �
TR_BEGIN_REQ

TR_BEGIN_IND

TR_OK_ACKTR_ABORT_IND

TR_ABORT_REQ

Figure 3.13: Sequence of Primitives – TR User Rejection of a Transaction Initiation Attempt
 	
If the TR provider is unable to establish a transaction, it indicates this to the requester by an TR_

ABORT_IND. The originator of the primitive indicates a TR provider invoked release. This is shown
in Figure 3.14.� �

TR_BEGIN_REQ

TR_ABORT_IND

Figure 3.14: Sequence of Primitives – TR Provider Rejection of a Transaction Initiation Attempt
 	

3.3 Connectionless Mode Services Definition

The connectionless mode service allows for the transfer of transaction user data in one and both
directions simultaneously without establishing a transaction dialogue. A set of primitives are defined
that carry transaction user data and control information between the TR user and the TR provider
entities. The primitives are modelled as requests initiated by the TR user and indications initiated
by the TR provider. Indications may be initiated by the TR provider independently from requests
by the TR user.

The connectionless mode service consists of one phase.

3.3.1 Request and Response Primitives

• TR_UNI_REQ: This primitive requests that the TR provider send the transaction user data to
the specified destination.

• TR_UNI_IND: This primitive indicates to the TR user that a user data sequence has been
received from the specified originating address.

Figure 3.15 shows the sequence of primitives for the connectionless mode of transfer.

20 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Services Definition

� �
TR_UNI_REQ

TR_UNI_IND

Figure 3.15: Sequence of Primitives – Connectionless Mode Data Transfer
 	
• TR_NOTICE_IND: This primitive indicates to the TR user that the user data with the specified

destination address and QOS parameters produced an error. This primitive is specific to CLTS.

Figure 3.16 shows the sequence of primitives for the CLTS error management primitive.� �
TR_UNI_REQ

TR_NOTICE_IND

Figure 3.16: Sequence of Primitives – CLTS Error Indication Service
 	

2014-10-25 21

Transaction Interface (TRI) TRI Primitives

4 TRI Primitives

This section describes the format and parameters of the TRI primitives. In addition, it discusses
the states in which the primitive is valid, the resulting state, and the acknowledgement that the
primitive expects.

The mapping of TRI of TRI primitives to the primitives defined in ITU-T Q.771, ITU-T X.219 and
ANSI T1.114 are shown in Appendix A [Mapping TRI Primitives], page 91. The state/event tables
for these primitives are shown in Appendix B [State/Event Tables], page 97. The precedence tables
for the TRI primitives are shown in Appendix C [Primitive Precedence Tables], page 99.

The following tables provide a summary of the TR primitives and their parameters.

SERVICE PRIMITIVE PARAMETERS

TR_BEGIN_REQTR Initiation ()

TR_BEGIN_IND ()

TR_BEGIN_RES ()

TR_BEGIN_CON ()

Table 4. Transaction Initiation Transaction Service Primitives

SERVICE PRIMITIVE PARAMETERS

TR_CONT_REQTR Data Transfer ()

TR_CONT_IND ()

Table 5. Transaction Data Transfer Transaction Service Primitives

SERVICE PRIMITIVE PARAMETERS

TR_END_REQTR Termination ()

TR_END_IND ()

TR_ABORT_REQ ()

TR_ABORT_IND ()

Table 6. Transaction Termination Transaction Service Primitives

2014-10-25 23

Chapter 4: TRI Primitives

4.1 Management Primitives

These primitives apply to all transaction modes.

4.1.1 Transaction Information

4.1.1.1 Transaction Information Request

TR_INFO_REQ

This primitive request the TR provider to return the values of all supported protocol parameters (see
Section 4.1.1.2 [Transaction Information Acknowledgement], page 26), and also the current state of
the TR provider (as defined in Appendix B [State/Event Tables], page 97). This primitive does not
affect the state of the TR provider and does not appear in the state tables.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:

typedef struct TR_info_req {

ulong PRIM_type; /* Always TR_INFO_REQ */

} TR_info_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_INFO_REQ.

Modes

Both connection-mode and connectionless-mode.

Originator

Transaction user.

Valid States

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_INFO_ACK primitive described
in Section 4.1.1.2 [Transaction Information Acknowledgement], page 26.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive and that the TR user wait for the acknowledgement before issuing any other
primitives:

24 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

— Successful: Correct acknowledgement of the primitive is indicated with the TR_INFO_ACK prim-
itive described in Section 4.1.1.2 [Transaction Information Acknowledgement], page 26.

— Non-fatal Errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

There are no errors associated with the issuance of this primitive.

2014-10-25 25

Chapter 4: TRI Primitives

4.1.1.2 Transaction Information Acknowledgement

TR_INFO_ACK

This primitive indicates to the TR user any relevant protocol-dependent parameters.1 It should be
initiated in response to the TR_INFO_REQ primitive described above under Section 4.1.1.1 [Transac-
tion Information Request], page 24.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:

typedef struct TR_info_ack {

long PRIM_type; /* Always TR_INFO_ACK */

long ASDU_size; /* maximum ASDU size */

long EASDU_size; /* maximum EASDU size */

long CDATA_size; /* connect data size */

long DDATA_size; /* discon data size */

long ADDR_size; /* address size */

long OPT_size; /* options size */

long TIDU_size; /* transaction i/f data unit size */

long SERV_type; /* service type */

long CURRENT_state; /* current state */

long PROVIDER_flag; /* type of TR provider */

long TRI_version; /* version # of tri that is supported */

} TR_info_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_INFO_ACK.

ASDU size Indicates the maximum size (in octets) of Transaction Service User Data supported by
the TR provider.

EASDU size
Indicates the maximum size (in octets) of Expedited Transaction Service User Data
supported by the TR provider.

CDATA size
Indicates the maximum number of octets of data that may be associated with a trans-
action initiation primitive.

DDATA size
Indicates the maximum number of octets of data that may be associated with a trans-
action termination primitive.

ADDR size
Indicates the maximum size (in decimal digits) of a protocol address.

OPT size Indicates the maximum size (in decimal digits) of the options.

1

26 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

AIDU size Indicates the maximum size (in octets) of a Transaction Interface User Data supported
by the TR provider. This is the maximum amount of user data octets that can be
trasnfered acros the interface in a single data request primitive.

SERV type Indicates the service type.

CURRENT state
Indicates the current interface state.

PROVIDER flag
Indicates the transaction provider flags.

TRI version
Indicates the TR version. This is Version 1 of the interface specification.

Modes

This primitive is valid in both connection mode and connectionless mode.

Originator

This primitive is issued by the TR provider.

Valid State

This primitive may be issued in response to a TR_INFO_REQ and is valid in any state.

New State

On success, the new state is unchanged; on error, unchanged.

Rules

The following rules apply whey the type is TR_CLTRS:

— The EASDU size, CDATA size and DDATA size fields should be ‘-2’.

— The ASDU size should equal the AIDU size.

2014-10-25 27

Chapter 4: TRI Primitives

4.1.2 Transaction Protocol Address Management

4.1.2.1 Transaction Bind Request

TR_BIND_REQ

This primitive requests that the TR provider bind a protocol address to the stream, negotiate the
number of dialogue indications allowed to be outstanding by the TR provider for the specified
protocol address, and activate1 the stream associated with the protocol address.

Format

The format of the message is one M_PROTO message block. The format of the M_PROTO message block
is as follows:2

typedef struct TR_bind_req {

ulong PRIM_type; /* Always TR_BIND_REQ */

ulong ADDR_length; /* address length */

ulong ADDR_offset; /* address offset */

ulong XACT_number; /* maximum outstanding transaction reqs. */

ulong BIND_flags; /* bind flags */

} TR_bind_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type. Always TR_BIND_REQ.

ADDR length
Specifies the length3 of the protocol address to be bound to the stream.

ADDR offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins. The proper alignment of the address in the M_PROTO message block is
not guaranteed. The address in the M_PROTO message block is, however, aligned the
same as it was received from the TR user.

XACT number
4The requested number of dialogue begin indications5 allowed to be outstanding by the
TR provider for the specified protocol address. Only one stream per protocol address is
allowed to have a XACT number greater than zero. This indicates to the TR provider
that the stream is a listener stream for the TR user. This stream will be used by the TR

1 A stream is viewed as active when the transaction provider may receive and transmit APDUs (ACSE protocol
data units) associated with the stream.

2 The format of the TR_BIND_REQ primitive is chosen to be as consistent as possible with the equivalent TPI
and NPI primitives.

3 All lengths, offsets and sizes in all structures refer to the number of octets.
4 This field should be ignored by TR providers providing only a unidirectional (TCAP operation class 4, ROSE

operation class 5) service.
5 If the number of outstanding “begin” indications equals XACT number, the TR provider need not dis-

card further incoming “begin” indications, but may choose to queue them internally until the number of
outstanding “begin” indications dropts below XACT number.

28 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

provider for dialogue “begin” indications for that protocol address, see Section 4.2.1.2
[Transaction Begin Indication], page 48.

BIND flags Unused.

Modes

This primitive is valid both in connection and connectionless modes.

Originator

This primitive is issued by the TR user.

Valid State

This primitive is valid in state TRS_UNBND.

New State

The new state is TRS_WACK_BREQ.

Rules

For the rules governing the requests made by this primitive, see the TR_BIND_ACK primitive described
in Section 4.1.2.2 [Transaction Bind Acknowledgement], page 30.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_BIND_ACK prim-
itive described in Section 4.1.2.2 [Transaction Bind Acknowledgement], page 30.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

[TRBAADDR]

Indicates that the protocol address was in an incorrect format or the address
contained illegal information. It is not intended to indicate protocol errors.

[TRNOADDR]

Indicates that the TR provider could not allocate an address.

[TRACCES] Indicates that the user did not have proper permissions for the use of the requested
address.

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

[TRSYSERR]

A system error occurred and the UNIX System error is indicated in the primitive.

[TRADDRBUSY]

Indicates that the requested address is already in use.

2014-10-25 29

Chapter 4: TRI Primitives

4.1.2.2 Transaction Bind Acknowledgement

TR_BIND_ACK

This primitive indicates to the TR user that the specified protocol address has been bound to the
stream, that the specified number of dialogue indications are allowed to be queued by the TR provider
for the specified protocol address, and that the stream associated with the specified protocol address
has been activated.

Format

The format of the message is one M_PCPROTO message block. The format of the M_PCPROTO message
block is as follows:

typedef struct TR_bind_ack {

ulong PRIM_type; /* Always TR_BIND_ACK */

ulong ADDR_length; /* address length */

ulong ADDR_offset; /* address offset */

ulong XACT_number; /* open transactions */

ulong TOKEN_value; /* value of "token" assigned to stream */

} TR_bind_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_BIND_ACK.

ADDR length
Indicates the length of the protocol address that was bound to the stream.

ADDR offset
Indicates the offset from the beginning of the M_PCPROTO message block where the
protocol address begins. The proper alignment of the address in the M_PCPROTOmessage
block is not guaranteed.

XACT number
1 Indicates the accepted number of dialogue indications allowed to be outstanding by
the TR provider for the specified protocol address.

TOKEN value
Indicates a token value to be used when accepting dialogues indicated on other streams
using this stream.

Modes

This primitive is valid in bidirectional and unidirectional modes.

Originator

This primitive is issued by the TR provider.

Valid State

This primitive is issued in response to a TR_BIND_REQ and is valid in state TRS_WACK_BREQ.

1 This field does not apply to unidirectional TR providers.

30 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

New State

On success, the new state is TRS_IDLE; on error, TRS_UNBND.

Rules

The following rules apply to the binding of the specified protocol address to the stream:

— If the ADDR length field in the TR_BIND_REQ primitive is zero (0), then the TR provider must
assign a protocol address to the user.

— The TR provider is to bind the protocol address as specified in the TR_BIND_REQ primitive. If
the requested protocol address is in use or if the TR provider cannot bind the specified address,
it must return an error.

The following rules apply to negotiating the XACT number argument:

— The returned value must be less than or equal to the corresponding requested number as
indicated in the TR_BIND_REQ primitive.

— If the requested value is greater than zero, the returned value must also be greater than zero.

— Only one stream that is bound to the indicated protocol address any have a negotiated accepted
number of maximum transaction requests greater than zero. If a TR_BIND_REQ primitive speci-
fies a value greater than zero, but another stream has already bound itself to the given protocol
address with a value greater than zero, the TR provider must return an error.

— If a stream with XACT number greater than zero is used to accept a dialogue (without speci-
fying a TRANS id), the stream will be found busy during the duration of that connection and
no other streams may be bound to that protocol address with a XACT number greater than
zero. This will prevent more than one stream bound to the identical protocol address from
accepting dialogue indications. See also Section 4.2.1.3 [Transaction Begin Response], page 50.

— A stream requesting a XACT number of zero should always be legal. This indicates to the TR
provider that the stream is to be used to request dialogues only.

— stream with a negotiated XACT number greater than zero may generate dialogue requests
(see Section 4.2.1.1 [Transaction Begin Request], page 45,) or accept dialogue indications (see
Section 4.2.1.3 [Transaction Begin Response], page 50.)

If the above rules result in an error condition, then the TR provider must issue a TR_ERROR_ACK

primitive to the TR user specifying the error as defined in the description of the TR_BIND_REQ

primitive, Section 4.1.2.1 [Transaction Bind Request], page 28.

2014-10-25 31

Chapter 4: TRI Primitives

4.1.2.3 Transaction Unbind Request

TR_UNBIND_REQ

This primitive requests that the TR provider unbind the protocol address previously associated with
the stream and deactivate the stream.

Format

The format of the message is one M_PROTO message block structured as follows:

typedef struct TR_unbind_req {

ulong PRIM_type; /* Always TR_UNBIND_REQ */

} TR_unbind_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type. Always TR_UNBIND_REQ.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR user.

Valid State

This primitive is valid in state TRS_IDLE.

New State

The new state is TRS_WACK_UREQ.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK primitive
described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledgement], page 42.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

TRSYSERR
A system error occurred and the UNIX System error is indicated in the primitive.

32 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.1.2.4 Transaction Protocol Address Request

TR_ADDR_REQ

This primitive requests that the TR provider return the local protocol address that is bound to the
stream and the address of the remote ASE if a transaction association has been established.

Format

The format of the message is one M_PROTO message block structured as follows:

typedef struct TR_addr_req {

long PRIM_type; /* always TR_ADDR_REQ */

ulong TRANS_id; /* Transaction id */

} TR_addr_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type. Always TR_ADDR_REQ.

TRANS id Specifies the transaction association identifier for which address service is requested. If
address service is requested for local bind address only, then the transaction identifier
must be ‘-1’.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR user.

Valid State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state is unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_ADDR_ACK primitive described
in Section 4.1.2.5 [Transaction Protocol Address Acknowledgement], page 35.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_ADDR_ACK prim-
itive described in Section 4.1.2.5 [Transaction Protocol Address Acknowledgement], page 35.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

2014-10-25 33

Chapter 4: TRI Primitives

[TRBADID] The transaction identifier specified in the primitive was incorrect or invalid.

[TRNOTSUPPORT]

This primitive is not supported by the transaction provider.

[TRSYSERR]

A system error has occured and the Linux system error is indicated in the primi-
tive.

34 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.1.2.5 Transaction Protocol Address Acknowledgement

TR_ADDR_ACK

This primitive indicates to the TR user the addresses of the local and remote ASE. The local address
is the protocol address that has been bound to the stream. If an transaction association has been
established, the remote address is the protocol address of the remote ASE.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_addr_ack {

long PRIM_type; /* always TR_ADDR_ACK */

long LOCADDR_length; /* length of local address */

long LOCADDR_offset; /* offset of local address */

long REMADDR_length; /* length of remote address */

long REMADDR_offset; /* offset of remote address */

} TR_addr_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_ADDR_ACK.

LOCADDR length
Indicates the length of the protocol address that was bound to the stream.

LOCADDR offset
Indicates the offset from the beginning of the M_PCPROTO message block where the
protocol address begins.

REMADDR length
Indicates the length of the protocol address of the remote ASE.

REMADDR offset
Indicates the offset from the beginning of the M_PCPROTO message block where the
protocol address begins.

The proper alignement of the addresses in the M_PCPROTO message block is not guaranteed.

Modes

Both connection-mode and connectionless-mode.

Originator

Transaction provider.

Valid State

This primitive is issued in response to a TR_ADDR_REQ primitive and is valid in any state where a
response is pending to a TR_ADDR_REQ.

New State

The new state remains unchanged.

2014-10-25 35

Chapter 4: TRI Primitives

Rules

The following rules apply:

— If the requested transaction identifier was ‘-1’ in the corresponding TR_ADDR_REQ primitive,
and the transaction endpoint is not bound to a local address, (i.e. it is in the TRS_UNINIT or
TRS_UNBND state) the LOCADDR length and LOCADDR offset fields must be set to ‘0’.

— If the requested transaction exists as identifed in the corresponding TR_ADDR_REQ primitive,
LOCADDR length and LOCADDR offset fields will be populated to reflect the local association
address for the specified transaction.

— If the requested transaction identifier was ‘-1’ in the corresponding TR_ADDR_REQ primitive, the
REMADDR length and REMADDR offset fields must be set to ‘0’.

— If the requested transaction exists as identified in the corresponding TR_ADDR_REQ primitive,
REMADDR length and REMADDR offset fields will be populated to reflect the remote asso-
ciation address for the specified transaction.

36 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.1.3 Transaction Options Management

4.1.3.1 Transaction Options Management Request

TR_OPTMGMT_REQ

This primitive alllows the transaction user to manage the options associated with the stream. The
format of the message is one M_PROTO message block.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_optmgmt_req {

ulong PRIM_type; /* Always TR_OPTMGMT_REQ */

ulong OPT_length; /* options length */

ulong OPT_offset; /* options offset */

ulong MGMT_flags; /* options data flags */

} TR_optmgmt_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type. Always TR_OPTMGMT_REQ.

OPT length
Specifies the length of the protocol options associated with the primitive.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the options
begin.

MGMT flags
Specifies the management flags which define the request made by the transaction user.

The proper alignment of the options is not guaranteed. The options are, however, aligned the same
as received from the transaction user.

Flags

The allowable flags are:

TR_NEGOTIATE

Negotiate and set the options with the transaction provider.

TR_CHECK Check the validity of the specified options.

TR_DEFAULT

Return the default options.

TR_CURRENT

Return the currently effective option values.

Modes

This primitive is valid both in unidirectional and bidirectional modes.

2014-10-25 37

Chapter 4: TRI Primitives

Originator

This primitive is originated by the transaction user.

Valid State

This primitive is valid in any state where the transaction user is not expecting a local acknowledge-
ment.

New State

The state remains unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_OPTMGMT_ACK primitive
described in Section 4.1.3.2 [Transaction Options Management Acknowledgement], page 39.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive, and that the transaction user wait for the acknowledgement before issuing
any other primitives:

— Successful: Correct acknowledgement is indicated with the TR_OPTMGMT_ACK primitive described
in Section 4.1.3.2 [Transaction Options Management Acknowledgement], page 39.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

[TRACCES] The user did not have proper permissions for the use of the requested options.

[TRBADFLAG]

The flags as sepcified were incorrect or invalid.

[TRBADOPT]

The options as specified were in an incorrect ofrmat, or they contained invalid
information.

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

[TRNOTSUPPORT]

This primiitve is not supported by the transaction provider.

[TRSYSERR]

A system error occurred and the UNIX System error is indicated in the primitive.

38 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.1.3.2 Transaction Options Management Acknowledgement

TR_OPTMGMT_ACK

This primitive indicates to the transaction user that the options management request has completed.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_optmgmt_ack {

ulong PRIM_type; /* Always TR_OPTMGMT_ACK */

ulong OPT_length; /* options length */

ulong OPT_offset; /* options offset */

ulong MGMT_flags; /* options data flags */

} TR_optmgmt_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_OPTMGMT_ACK.

OPT length
Indicates the length of the protocol options associated with the primitive.

OPT offset Indicates the offset from the beginning of the M_PCPROTO message block where the
options begin. The proper alignment of the options is not guaranteed.

MGMT flags
Indicates the management flags in the same form as specified in the TR_OPTMGMT_REQ

primitive, See Section 4.1.3.1 [Transaction Options Management Request], page 37,
with any additional flags as specified below.

Flags

The flags returned in MGMT flags represents the single most severe result of the operation. The
flags returned will be one of the following values (in order of decreasing severity):

TR_NOTSUPPORT

This flag indicates that at least one of the options specified in the TR_OPTMGMT_REQ

primitive was not supported by the trasnaction provider at the current privilege level
of the requesting user.

TR_READONLY

This flag indicates that at least one of the options specified in the TR_OPTMGMT_REQ

primitive is read-only (for the current TRI state). This flag does not apply when the
MGMT flags field in the TR_OPTMGMT_REQ primitive was T_DEFAULT.

TR_FAILURE

This flag indicates that negotiation of at least one of the options specified in the TR_

OPTMGMT_REQ primitive failed. This is not used for illegal format or values. This flag
does not apply when the MGMT flags field in the TR_OPTMGMT_REQ primitive was T_
DEFAULT or T_CURRENT.

2014-10-25 39

Chapter 4: TRI Primitives

TR_PARTSUCCESS

This flag indicates that the negotiation of at least one of the options specified in the
TR_OPTMGMT_REQ primitive was negotiated to a value of lesser quality than the value
requested. This flag only applies when the MGMT flags field of the TR_OPGMGMT_REQ

primitive was T_NEGOTIATE.

TR_SUCCESS

This flag indicates that all of the specified options were negoitated or returned success-
fully.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR provider.

Valid State

This primitive is issued in response to a TR_OPTMGMT_REQ primitive and is valid in any state.

New State

The new state remains unchanged.

Rules

The following rules apply to the TR_OPTMGMT_ACK primitive:

— If the value of MGMT flags in the TR_OPTMGMT_REQ primitive is TR_DEFAULT, the provider
should return the default provider options without changing the existing options associated
with the Stream.

— If the value of MGMT flags in the TR_OPTMGMT_REQ primitive is TR_CHECK, the provider should
return the options as specified in the TR_OPTMGMT_REQ primitive along with the additional
flags TR_SUCCESS or TR_FAILURE which indicate to the user whether the specified options are
supportable by the provider. The provider should not change any existing options associated
with the Stream.

— If the value of MGMT flags in the TR_OPTMGMT_REQ primitive is TR_NEGOTIATE, the provider
should set and negotiate the option as specified by the following rules:

− If the OPT length field of the TR_OPTMGMT_REQ primitive is zero (‘0’), then the transaction
provider is to set and return the default options associated with the Stream in the TR_

OPTMGMT_ACK primitive.

− If options are specified in the TR_OPTMGMT_REQ primitive, then the transaction provider
should negotiate those options, set the negotiated options and return the negotiated op-
tions in the TR_OPTMGMT_ACK pirmitive. It is the user’s responsibility to check the negoti-
ated options returned in the TR_OPMGMT_ACK primitive and take appropriate action.

— If the value of MGMT flags in the TR_OPTMGMT_REQ primtiive is TR_CURRENT, the provider
should return the currently effective option values without changing any existing options asso-
ciated with the Stream.

Errors

If the above rules result in an error condition, the transaction provider must issue a TR_ERROR_ACK

primitive (see Section 4.1.4.2 [Transaction Error Acknowledgement], page 43) to the transaction user

40 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

specifying the error as defined in the description of the TR_OPTMGMT_REQ primitive (see Section 4.1.3.1
[Transaction Options Management Request], page 37).

2014-10-25 41

Chapter 4: TRI Primitives

4.1.4 Transaction Error Management

4.1.4.1 Transaction Successful Receipt Acknowledgement

TR_OK_ACK

This primitive indicates to the TR user that the previous TR-user-originated primitive was received
successfully by the TR provider. It does not indicate to the TR user any TR protocol action taken
due to the issuance of the last primitive. This may only be initiated as an acknowledgement for
those primitives that require one.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_ok_ack {

ulong PRIM_type; /* Always TR_OK_ACK */

ulong CORRECT_prim; /* correct primitive */

} TR_ok_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_OK_ACK.

CORRECT prim
Indicates the primitive type that was successfully received.

Modes

This primitive is valid in all Operations Classes.

Originator

This primitive is issued by the TR provider.

Valid State

Valid in any state where a local acknowledgement requiring TR_OK_ACK response is pending.

New State

Depends on the current state; see Appendix B [State/Event Tables], page 97.

42 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.1.4.2 Transaction Error Acknowledgement

TR_ERROR_ACK

This primitive indicates to the TR user that a non-fatal1 error has occurred in the last TR-user-
originated primitive. This may only be initiated as an acknowledgement for those primitives that
require one. It also indicates to the TR user that no action was taken on the primitive that cause
the error.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_error_ack {

ulong PRIM_type; /* Always TR_ERROR_ACK */

ulong ERROR_prim; /* primitive in error */

ulong TRI_error; /* TRI error code */

ulong UNIX_error; /* UNIX error code */

ulong TRANS_id; /* Transaction id */

} TR_error_ack_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_ERROR_ACK.

ERROR prim
Indicates the primitive type that was in error.

TRI error Indicates the Transaction Sub-Layer Interface error code.

UNIX error
Indicates the UNIX System error code. This field is zero (0) unless the TRI error is
equal to [TRSYSERR].

TRANS id Indicaets the transcation identifier for the transaction upon which the primitive caused
an error.

Mode

This primitive can be issued in any Operations Class.

Originator

This primitive is originated by the TR provider.

Valid State

This primitive is valid in any state where a local acknowledgement is pending and an error has
occurred.

1 For an overview of the error handling capabilities available to the TR provider, see Chapter 5 [Diagnostics
Requirements], page 73.

2014-10-25 43

Chapter 4: TRI Primitives

New State

The new state is the state that the interface was in before the primitive in error was issued, see
Appendix B [State/Event Tables], page 97.

Rules

This primitive may only be issued as an acknowledgement for those primitives that require one. It
also indicates to the user that no action was taken on the primtiive that caused the error.

Errors

The TR provider is allowed to return any of the following TR error codes:

[TRBADADDR]

Indicates that the protocol address as specified in the primitive was of an incorrect
format or the address contained illegal information.

[TRBADOPT]

Indicates that the options as specified in the primitive were in an incorrect format, or
they contained illegal information.

[TRBADF] Indicates that the stream queue pointer as specified in the primitive was illegal.

[TRNOADDR]

Indicates that the TR provider could not allocate a protocol address.

[TRACCES] Indicates that the user did not have proper permissions to use the protocol address or
options specified in the primitive.

[TROUTSTATE]

Indicates that the primitive would place the interface out of state.

[TRBADSEQ]

Indicates that the transaction identifier specified in the primitive was incorrect or
illegal.

[TRBADFLAG]

Indicates that the flags specified in the primitive were incorrect or illegal.

[TRBADDATA]

Indicates that the amount of user data specified was illegal.

[TRSYSERR]

Indicates that a system error has occurred and that the UNIX System error is indicated
in the primitive.

[TRADDRBUSY]

Indicates that the requested address is already in use.

[TRRESADDR]

Indicates that the TR provider requires the responding stream be bound to the
same protocol address as the stream on which the dialogue “begin” indication (see
Section 4.2.1.2 [Transaction Begin Indication], page 48) was received.

[TRNOTSUPPORT]

Indicates that the TR provider does not support the requested capability.

44 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.2 Connection-Oriented Mode Primitives

4.2.1 Transaction Establishment

The transaction begin service provides means to start a transaction between two TR-users. This
may be accompanied by the transfer of TR-user information contained in M_DATA message blocks
accompanying the primitive.

4.2.1.1 Transaction Begin Request

TR_BEGIN_REQ

This primitive requests that the TR provider form an transaction association to the specified desti-
nation protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks if any user data is specified by the TR user. The format of the M_PROTO message block is as
follows:

typedef struct TR_begin_req {

ulong PRIM_type; /* Always TR_BEGIN_REQ */

ulong CORR_id; /* Correlation Id */

ulong ASSOC_flags; /* Association flags */

ulong DEST_length; /* Destination address length */

ulong DEST_offset; /* Destination address offset */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_begin_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_BEGIN_REQ.

CORR id Specifies the correlation identifier for the newly formed transaction. The correlation
identifier is an identifier chose by the TR user that uniquely identifies this transac-
tion association establishment request from other establishment requests on the same
stream. If the CORR id is zero (0), it specifies that this is the only transaction to be
formed on the requesting stream and attempts to form additional transactions before
this transaction is complete will fail. The value of CORR id will be returned in

ASSOC flags
Specifies the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

DEST length
Specifies the length of the protocol address to which to establish an transaction asso-
ciation.

2014-10-25 45

Chapter 4: TRI Primitives

DEST offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins.

ORIG length
Specifies the length of the protocol address from which to establish an transaction
association.

ORIG offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins.

OPT length
Specifies the length of the protocol options associated with the transaction.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin.

Flags

TR_SEQ_ASSURANCE

By setting this flag on the primitive, the originating transaction user can indicate that
“sequence assured” service is requested from the underlying network service provider.

TR_NO_PERMISSION

By setting this flag on the primitive, the originating transaction user can either deny
(set) or grant (clear) permission for the transaction peer to terminate the transaction
association upon receipt of the corresponding primitive at the peer (see Section 4.2.1.2
[Transaction Begin Indication], page 48). This flag can only be used with transaction
provider that support it (see [Addendum for ANSI Conformance], page 83).

Valid State

This primitive is valid in transaction state TRS_IDLE. This primitive is only valid in connection-
oriented mode.

New State

The new state for the interface is TRS_WACK_CREQ.

Rules

The following rules apply to the specification of parameters to this primitive:

— When the originating address is not specified, ORIG length and ORIG offset must be specified
as zero (0).

— When the ORIG length and ORIG offset are zero (0), the originating address is the local
address that is implicitly associated with the access point from the local bind service (see
Section 4.1.2.1 [Transaction Bind Request], page 28).

— The destination address must be specified and the TR provider will return error [TRNOADDR]
if the DEST length and DEST offset are zero (0).

Acknowledgements

This primitive requires the transaction provider to generate one of the following acknowledgements
upon receipt of the primitive:

46 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

— Successful Association Establishment: This is indicated with the TR_BEGIN_CON primitive de-
scribed in Section 4.2.1.1 [Transaction Begin Request], page 45. This results in the TRS_

DATA_XFER state for the transaction. Successful establishment and tear down can also be indi-
cated with the TR_END_IND primitive described in Section 4.2.3.2 [Transaction End Indication],
page 62. This results in the TRS_IDLE state for the transaction.

— Unsuccessful Association Establishment: This is indicated with the TR_ABORT_IND primitive
described in Section 4.2.3.4 [Transaction Abort Indication], page 66. For example, an asso-
ciation may be rejected because either the called transaction user cannot be reached, or the
transaction provider or the called transaction user did not agree on the specified options. This
results in the TRS_IDLE state for the transaction.

— Non-fatal errors: These are indicated with the TR_ERROR_ACK primitive. The applicable non-
fatal errors are defined as follows:

[TRACCES] This indicates that the user did not have proper permissions for the use of the
requested protocol address or protocol options.

[TRBADADDR]

This indicates that the protocol address was in an incorrect format or the address
contained illegal information. It is not intended to indicate protocol connection
errors, such as an unreachable destination. Those types of errors are indicated
with the TR_ABORT_IND primitive described in Section 4.2.3.4 [Transaction Abort
Indication], page 66.

[TRBADOPT]

This indicates that the options were in an incorrect format or they contained
illegal information.

[TROUTSTATE]

The primitive would place the transaction interface out of state.

[TRBADDATA]

The amount of user data specified was illegal (see Section 4.1.1.2 [Transaction
Information Acknowledgement], page 26).

[TRSYSERR]

A system error has occured and the UNIX System error is indicated in the prim-
itive.

2014-10-25 47

Chapter 4: TRI Primitives

4.2.1.2 Transaction Begin Indication

TR_BEGIN_IND

This primitive indicates to the destination TR user that a transaction association begin request has
been made by the user at the specified source protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_begin_ind {

ulong PRIM_type; /* Always TR_BEGIN_IND */

ulong TRANS_id; /* Transaction id */

ulong ASSOC_flags; /* Association flags */

ulong DEST_length; /* Destination address length */

ulong DEST_offset; /* Destination address offset */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_begin_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_BEGIN_IND.

TRANS id Indicates the transaction identifier associated by the transaction provider with this
begin indication.

ASSOC flags
Specifies the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

DEST length
Indicates the length of the protocol address to which a transaction association was
requested established by the peer.

DEST offset
Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
address begins.

ORIG length
Indicates the length of the protocol address from which a transaction association was
requested established.

ORIG offset
Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
address begins.

OPT length
Indicates the length of the protocol options associated with the transaction begin in-
dication.

48 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

OPT offset Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
options begin.

Flags

TR_NO_PERMISSION

The value of this flag may indicate either that the transaction peer gives permission
(clear) to end the transaction association or refuses permission (set) to end the trans-
action association. This flag is only valid for transaction providers that support it (see
[Addendum for ANSI Conformance], page 83).

Valid State

This primitive is valid in state TRS_IDLE. This primitive is only valid in connection-oriented mode.

New State

The new state for the identified transaction is TRS_WRES_CIND.

Rules

The following rules apply to the issuance of this primitive by the transaction provider:

— The transaction identifier provided by the transaction provider uniquely identifies this trans-
action begin indication within the stream upon which the primitive is issued. This must be a
positive, non-zero value. The high bit of the transaction identifier is reserved for exclusive use
by the transaction user in generating correlation identifiers.

— It is not necessary to indicate a destination address in DEST length, and DEST offset when
the protocol address to which the begin indication corresponds is the same as the local protocol
address to which the listening stream is bound. In the case that the destination protocol address
is not provided, DEST length and DEST offset must both be set to zero (0). When the local
protocol address to which the begin indication corresponds is not the same as the bound address
for the stream, the transaction provider must indicate the destination protocol address using
DEST length and DEST offset.

— The origination protocol address is a mandatory field. The transaction provider must indicate
the originating protocol address corresponding to the begin indication using the ORIG length
and ORIG offset fields.

— Any indicated options are included in the OPT length and OPT offset fields.

— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_REQ

primitive in response to this indication.

2014-10-25 49

Chapter 4: TRI Primitives

4.2.1.3 Transaction Begin Response

TR_BEGIN_RES

This primitive allows the destination TR user to request that the transaction provider accept a
previous transaction association begin indication.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_begin_res {

ulong PRIM_type; /* Always TR_BEGIN_RES */

ulong TRANS_id; /* Transaction id */

ulong ASSOC_flags; /* Association flags */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_begin_res_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_BEGIN_RES.

TRANS id Specifies the transaction identifier of an outstanding begin indication to which the
transaction user is responding.

ASSOC flags
Specifies the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

ORIG length
Specifies the length of the protocol address to be used as the responding address.

ORIG offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins.

OPT length
Specifies the length of the protocol options to be associated with the begin response.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin.

Flags

TR_SEQ_ASSURANCE

By setting this flag on the primitive, the originating transaction user can indicate that
“sequence assured” service is requested from the underlying network service provider.

50 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

TR_NO_PERMISSION

By setting this flag on the primitive, the originating transaction user can either deny
(set) or grant (clear) permission for the transaction peer to terminate the transaction
association upon receipt of the corresponding primitive at the peer (see Section 4.2.1.2
[Transaction Begin Indication], page 48). This flag can only be used with transaction
provider that support it (see [Addendum for ANSI Conformance], page 83).

Valid State

This primitive is valid in transaction state TRS_WRES_CIND. This primitive is only valid in connection-
oriented mode.

New State

The new state for the specified transaction is TRS_DATA_XFER.

Rules

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK primitive
described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledgement], page 42.

— Unsuccessful (Non-fatal errors): These errors will be indicated with the TR_ERROR_ACK primi-
tive described in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable
errors are as follows:

[TRBADF] The token specified is not associated with an open stream.

[TRBADOPT]

The options were in an incorrect format, or they contained illegal information.

[TRACCES] The user did not have proper permissions for the use of the responding protocol
address or protocol options.

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

[TRBADDATA]

The amount of user data specified was outside the range supported by the trans-
action provider.

[TRBADSEQ]

The transaction identifier specified in the primitive was incorrect or illegal.

[TRSYSERR]

A system error occurred and the UNIX System error is indicated in the primitive.

[TRRESADDR]

The transaction provider requires that the responding stream is bound to the
same address as the stream on which the transaction association begin indication
was received.

2014-10-25 51

Chapter 4: TRI Primitives

[TRBADADDR]

This indicates that the protocol address was in an incorrect format or the protocol
address contained illegal information.

52 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.2.1.4 Transaction Begin Confirmation

TR_BEGIN_CON

This primitive indicates to the source transaction user that a previous transaction association begin
request has been confirmed on the specified responding protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_begin_con {

ulong PRIM_type; /* Always TR_BEGIN_CON */

ulong CORR_id; /* Correlation Id */

ulong TRANS_id; /* Transaction id */

ulong ASSOC_flags; /* Association flags */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_begin_con_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_BEGIN_CON.

CORR id Indicates the correlation identifier used by the transport user to uniquely identify the
transaction begin request of the stream to which this confirmation corresponds. This is
the transaction user assigned transaction identifier of the corresponding TR_BEGIN_REQ

that this message is confirming.

TRANS id Indicates the transaction identifier provided by the transport provider to uniquely
identify the transaction on this stream.

ASSOC flags
Indicates the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

ORIG length
Indicates the length of the responding protocol address from which the confirmation
was received.

ORIG offset
Indicates the offset from the beginning of the M_PROTO message block where the re-
sponding protocol address begins.

OPT length
Indicates the length of the confirmed protocol options negotiated by the transaction
peer.

OPT offset Indicates the offset from the beginning of the M_PROTO message block where the con-
firmed protocol options begin.

2014-10-25 53

Chapter 4: TRI Primitives

The proper alignment of the responding address and options in the M_PROTO message block is not
guaranteed.

Flags

The following association flags are defined:

TR_NO_PERMISSION

The value of this flag may indicate either that the transaction peer gives permission
(clear) to end the transaction association or refuses permission (set) to end the trans-
action association. This flag is only valid for transaction providers that support it (see
[Addendum for ANSI Conformance], page 83).

Mode

This primitive is only valid in connection-oriented mode.

Originator

Transaction provider.

Valid State

This primitive is valid in transaction state TRS_WCON_CREQ.

New State

The new state for the transaction is TRS_DATA_XFER.

Rules

The following rules apply to the issuance of this primitive:

— It is not always necessary for the transport provider to provide the responding address in the
ORIG length and ORIG offiset fields. Where the responding protocol address is the same as
the destination protocol address for which the transaction initialization was requested, it is not
necessary to provide the responding address in the TR BEGIN CON. Where the responding
protocol address is not provided, the ORIG length and ORIG offset fields are set to zero (0).

— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_REQ

primitive in response to this indication.

54 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

4.2.2 Transaction Data Transfer

The data transfer service primitives provide for an exchange of transaction user data known as
TSDUs, in either direction or in both directions simultaneously on a transaction association. The
transaction service preserves both the sequence and the boundaries of the TSDUs.

4.2.2.1 Transaction Continue Request

TR_CONT_REQ

This user-originated primitive specifies to the transaction provider that this message contains trans-
action user data. It allows the transfer of transaction user data between transaction users, without
modification by the transaction provider.

The transaction user must send an integral number of octets of data greater than zero. In a case
where the size of the TSDU exceeds the TIDU (as specified by the size of the TIDU size parameter of
the TR_INFO_ACK primitive described in Section 4.1.1.2 [Transaction Information Acknowledgement],
page 26), the TSDU may be broken up into more than one TIDU. When a TSDU is broken up into
more than one TIDU, the T_MORE flag will be set on each TIDU except the last one.

Format

The format of the message is one or more M_DATA message blocks. Use of a M_PROTO message block
is optional. The M_PROTO message block is used for two reasons:

a. to indicate that the TSDU is broken into more than one TIDU, and that the data carried in
the following M_DATA message block constitutes one TIDU;

b. to indicate whether receipt confirmation is desired for the TSDU.

message block, followed by zero or more M_DATA message blocks containing user data for the associ-
ation, structured as follows:

typedef struct TR_cont_req {

ulong PRIM_type; /* Always TR_CONT_REQ */

ulong TRANS_id; /* Transaction id */

ulong ASSOC_flags; /* Association flags */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_cont_req_t;

Guidelines for use of M_PROTO

The following guidelines must be followed with respect to the user of the M_PROTO message block:

1. The M_PROTO message block need not be present when the TSDU size is less that or equal to
the TIDU size and one of the following is true:

— receipt confirmation has been negotiated for non-use; or

— receipt confirmation has been successfully negotiated for use or non-use and the default
selection as specified via the TR_OPTMGMT_REQ primitive is to be used.

2. The M_PROTO message block must be present when:

— the TSDU size is greater than the TIDU size;

— receipt confirmation has been successfully negotiated for use and the default selection as
specified with the TR_OPTMGMT_REQ primitive needs to be overridden.

2014-10-25 55

Chapter 4: TRI Primitives

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_CONT_REQ.

TRANS id Specifies the transaction identifier previously indicated by the transport provider to
uniquely identify the transaction. The transaction identifier must be specified by the
transaction user unless there is only one transaction supported by the stream in trans-
action state TRS_DATA_XFER. When specified, the transaction identifier must be the
same as the transaction identifier that was indicated by the transaction provider in the
corresponding TR_BEGIN_IND or TR_BEGIN_CON.

ASSOC flags
Specifies the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

OPT length
Specifies the length of the protocol options associated with the user data transfer.
Supplying protocol options with the primitive is optional. If the transaction user does
not provide protocol options with the primitive, the OPT length and OPT offset fields
must be set to zero (0) by the transaction user. The format of the protocol options are
provider specific.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin. Alignment of the protocol options in the M_PROTO message block is not
guaranteed. However, the alignment of the protocol options in the M_PROTO message
block are the same as was specified by the transport user.

Flags

TR_MORE_DATA_FLAG

When set, the MORE_DATA_FLAG indicates that the next TR_CONT_REQ primitive (TIDU)
is also part of this TSDU.

TR_RC_FLAG

By setting this flag on the TR_CONT_REQ, the originating transaction user can request
confirmation of receipt of the TR_CONT_REQ primitive.

TR_SEQ_ASSURANCE

By setting this flag on the primitive, the originating transaction user can indicate that
“sequence assured” service is requested from the underlying network service provider.

TR_NO_PERMISSION

By setting this flag on the TR_CONT_REQ, the originating transaction user can either
deny (set) or grant (clear) permission for the transaction peer to terminate the trans-
action association upon receipt of the corresponding TR_CONT_IND primitive. This flag
is only used for transaction providers that support this feature (see [Addendum for
ANSI Conformance], page 83).

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in connection-
oriented mode.

56 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

New State

The new state for the transaction remains unchanged.

Acknowledgements

This primitive does not require acknowledgement. If a non-fatal error occurs, it is the responsibility
of the peer ASE to report it within the upper-layer protocol or using the TR_ABORT_IND primitive
(see Section 4.2.3.4 [Transaction Abort Indication], page 66). Fatal errors are indicated with the
M_ERROR message type which results in the failure of all operating system service routines on the
stream. The allowable fatal errors are as follows:

[EPROTO] This error indicates on of the following unrecoverable protocol conditions:

— The transaction interface was found to be in an incorrect state.

— The amount of transaction user data associated with the primitive is outside
the range supported by the transaction provider (as specified by the TIDU size
parameter of the TR_INFO_ACK primitive described in Section 4.1.1.2 [Transaction
Information Acknowledgement], page 26.)

— The options requested are either not support by the transaction provider or their
use is not specified with the TR_BEGIN_REQ primitive.

— The M_PROTOmessage block was not follows by one or more M_DATAmessage blocks.

— The amount of transaction user data associated with the current NSDU is outside
the range supported by the transaction provider (as specified by the TSDU size
parameter in the TR_INFO_ACK primitive described in Section 4.1.1.2 [Transaction
Information Acknowledgement], page 26.)

— The TR_RC_FLAG and TR_MORE_DATA_FLAG were both set in the primitive, or the
flags field contained an unknown value.

NOTE: If the interface is in the TRS_IDLE state when the provider receives the TR_CONT_REQ primi-
tive, then the transaction provider should discard the request without generating a fatal error.

2014-10-25 57

Chapter 4: TRI Primitives

4.2.2.2 Transaction Continue Indication

TR_CONT_IND

This transaction provider originated primitive indicates to the transaction user that this message
contains transaction user data. As in the TR_CONT_REQ primitive (see Section 4.2.2.1 [Transaction
Continue Request], page 55), the TSDU can eb segmented into more than one TIDU. The TIDUs
are assocated with the TSDU by using the TR_MORE_DATA_FLAG. The TR_RC_FLAG and TR_NO_

PERMISSION flags are allowed to be set only on the last TIDU. Use of the M_PROTO message blocks
is optional (see guidelines describe in see Section 4.2.2.1 [Transaction Continue Request], page 55).

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_cont_ind {

ulong PRIM_type; /* Always TR_CONT_IND */

ulong TRANS_id; /* Transaction id */

ulong ASSOC_flags; /* Association flags */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_cont_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_CONT_IND.

TRANS id Indicates the transaction identifier previously indicated by the transport provider to
uniquely identify the transaction. The transaction identifier must be indicated by the
transaction provider. The transaction identifier must be the same as the transaction
identifier that was indicated in the corresponding TR_BEGIN_IND or TR_BEGIN_CON.

ASSOC flags
Specifies the option flags provided with the primitive. See “Flags” below. Some flags
may be provider specific.

OPT length
Indicates the length of the protocol options associated with the user data transfer.
Protocol options are only indicated by the transaction provider when they were supplied
by the underlying protocol. If the transport provider does not indicate protocol options,
the OPT length and OPT offset fields must be set to zero (0). The format of the
protocol options are provider specific.

OPT offset Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
options begin.

Flags

TR_MORE_DATA_FLAG

When set, indicates taht the next TR_CONT_IND message (TIDU) is part of this TSDU.

58 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

TR_RC_FLAG

The value of the flag may indicate either that confirmation is requested or that it is
not requested. The flag is allowed to be set only if use of the Receipt Confirmation
was agreed between both the transaction users and the transaction provider during
transaction association establishment. The value of this flag is always identical to that
supplied in the corresponding TR_CONT_REQ.

TR_NO_PERMISSION

The value of this flag may indicate either that the transaction peer gives permission
(clear) to end the transaction association or does not give permission (set) to end the
transaction association. This flag is only valid for transaction providers that support
it (see [Addendum for ANSI Conformance], page 83).

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in connection-
oriented mode.

New State

The new state for the transaction is unchanged.

Rules

— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_REQ

primitive in response to this indication.

2014-10-25 59

Chapter 4: TRI Primitives

4.2.3 Transaction Termination

4.2.3.1 Transaction End Request

TR_END_REQ

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_end_req {

ulong PRIM_type; /* Always TR_END_REQ */

ulong TRANS_id; /* Transaction id */

ulong TERM_scenario; /* Termination scenario */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_end_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_END_REQ.

TRANS id Specifies the transaction identifier previously indicated by the transport provider to
uniquely identify the transaction. The transaction identifier must be specified by the
transaction user unless there is only one transaction supported by the stream in trans-
action state TRS_DATA_XFER. When specified, the transaction identifier must be the
same as the transaction identifier that was indicated by the transaction provider in the
corresponding TR_BEGIN_IND or TR_BEGIN_CON.

TERM scenario
Specifies the termination scenario. Termination scenarios are provider specific.

OPT length
Specifies the length of the protocol options associated with the transaction association
termination. Supplying protocol options with the primitive is optional. If the trans-
action user does not provide protocol options with the primitive, the OPT length and
OPT offset fields must be set to zero (0) by the transaction user. The format of the
protocol options are provider specific.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin. Alignment of the protocol options in the M_PROTO message block is not
guaranteed. However, the alignment of the protocol options in the M_PROTO message
block are the same as was specified by the transport user.

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in connection-
oriented mode.

New State

The new state of the transaction is TRS_IDLE.

60 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

Rules

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK primitive
described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledgement], page 42.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

[TRSYSERR]

A system error occurred and the UNIX System error is indicated in the primitive.

2014-10-25 61

Chapter 4: TRI Primitives

4.2.3.2 Transaction End Indication

TR_END_IND

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_end_ind {

ulong PRIM_type; /* Always TR_END_IND */

ulong CORR_id; /* Correlation id */

ulong TRANS_id; /* Transaction id */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_end_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_END_IND.

CORR id Indicates the correlation identifier previously specified by the transport user to uniquely
identify an outstanding transaction request that has not yet received transaction con-
firmation. For all other cases, this field must be set to zero (0).

TRANS id Indicates the transaction identifier previously indicated by the transport provider to
uniquely identify the transaction. The transaction identifier must be indicated by the
transaction provider. The transaction identifier must be the same as the transaction
identifier that was indicated in the corresponding TR_BEGIN_IND or TR_BEGIN_CON (if
any).

OPT length
Indicates the length of the protocol options associated with the transaction association
termination. Protocol options are only indicated by the transaction provider when they
were supplied by the underlying protocol. If the transport provider does not indicate
protocol options, the OPT length and OPT offset fields must be set to zero (0). The
format of the protocol options are provider specific.

OPT offset Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
options begin.

Valid State

This primitive is valid in transaction states TRS_WCON_CREQ or TRS_DATA_XFER. This primitive is
only valid in connection-oriented mode.

New State

The new state for the transaction is TRS_IDLE.

Rules

The following rules apply to the issuance of this primitive:

62 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

— This primitive may be issued in response to a TR_BEGIN_REQ primitive. When issued in this
case, the transaction provider is indicating that a transaction is both confirmed and terminated.

— This primitive may be issued after receiving a TR_BEGIN_RES or issuing a TR_BEGIN_CON, but
before receiving a TR_END_REQ or TR_ABORT_REQ primitive, or issuing a TR_UABORT_IND or TR_
PABORT_IND primitive.

— When issued, this primitive indicates the tear-down of the transaction association corresponding
to the TRANS id indicated in the primitive.

2014-10-25 63

Chapter 4: TRI Primitives

4.2.3.3 Transaction User Abort Request

TR_ABORT_REQ

Format

The format of the message is one M_PROTO message block structured as follows:

typedef struct TR_abort_req {

ulong PRIM_type; /* Always TR_ABORT_REQ */

ulong TRANS_id; /* Transaction id */

ulong ABORT_cause; /* Cause of the abort */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_abort_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_ABORT_REQ.

TRANS id Specifies the transaction identifier previously indicated by the transport provider to
uniquely identify the association. The transaction identifier must be the same as the
transaction identifier that was indicated by the transaction provider in the correspond-
ing TR_BEGIN_IND or TR_BEGIN_CON primitive.

ABORT cause
Specifies the (user) cause for the abort. Abort causes are provider specific.

OPT length
Specifies the length of the protocol options associated with the abort. Supplying pro-
tocol options with the primitive is optional. If the transaction user does not provide
protocol options with the primitive, the OPT length and OPT offset fields must be set
to zero (0) by the transaction user. The format of the protocol options are provider
specific.

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin. Alignment of the protocol options in the M_PROTO message block is not
guaranteed. However, the alignment of the protocol options in the M_PROTO message
block are the same as was specified by the transport user.

Modes

This primitive is only valid in connection-oriented mode.

Originator

Transaction user.

Valid State

This primitive is valid in any connection oriented transaction state other than TRS_IDLE.

New State

The new state for the transaction is TRS_IDLE.

64 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements upon
receipt of the primitive:

— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK primitive
described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledgement], page 42.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive described
in Section 4.1.4.2 [Transaction Error Acknowledgement], page 43. The allowable errors are as
follows:

[TRBADDATA]

The amount of user data specified was invalid.

[TRBADID] The transaction identifier specified in the primitive was incorrect or invalid.

[TRNOTSUPPORT]

This primitive is not supported by the transaction provider.

[TROUTSTATE]

The primitive would place the transaction interface out of state for the indicated
transaction.

[TRSYSERR]

A system error occurred and the UNIX System error is indicated in the primitive.

The transport provider should not generate an error if it receives this primitive in the TRS_IDLE

state for the transaction.

2014-10-25 65

Chapter 4: TRI Primitives

4.2.3.4 Transaction Abort Indication

TR_ABORT_IND

This primitive indicates to the user that either a request for association has been denied or an
existing association has been aborted.

Format

The format of the message is one M_PROTO message block structured as follows:

typedef struct TR_abort_ind {

ulong PRIM_type; /* Always TR_ABORT_IND */

ulong CORR_id; /* Correlation id */

ulong TRANS_id; /* Transaction id */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

ulong ABORT_cause; /* Cause of the abort */

ulong ORIGINATOR; /* Originator P or U */

} TR_abort_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_ABORT_IND.

CORR id Indicates the correlation identifier previously specified by the transport user to uniquely
identify an outstanding transaction request that has not yet received transaction con-
firmation. For all other cases, this field must be set to zero (0).

TRANS id Indicates the transaction identifier previously indicated by the transport provider to
uniquely identify the transaction. The transaction identifier must be indicated by the
transaction provider. The transaction identifier must be the same as the transaction
identifier that was indicated in the corresponding TR_BEGIN_IND or TR_BEGIN_CON

primitive (if any).

OPT length
Indicates the length of the protocol options associated with the transaction association
termination. Protocol options are only indicated by the transaction provider when they
were supplied by the underlying protocol. If the transport provider does not indicate
protocol options, the OPT length and OPT offset fields must be set to zero (0). The
format of the protocol options are provider specific.

OPT offset Indicates the offset from the beginning of the M_PROTOmessage block where the protocol
options begin.

ABORT cause
Indicates the cause of the abort. Abort causes are provider specific.

ORIGINATOR
Indicates the originator of the abort. This field can have values TR_USER or TR_

PROVIDER or TR_UNSPECIFIED.

66 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

Modes

This primitive is only valid in connection-oriented mode.

Originator

Transaction provider.

Valid State

This primitive is valid in any connection oriented transaction state other than TRS_IDLE.

New State

The new state for the transaction is TRS_IDLE.

2014-10-25 67

Chapter 4: TRI Primitives

4.3 Connectionless Mode Primitives

4.3.1 Transaction Phase

4.3.1.1 Transaction Unidirectional Request

TR_UNI_REQ

This primitive requests that the TR provider send the specified unidirectional (connectionless) mes-
sage to the specified destination with the specified options and optional originating protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, structured as follows:

typedef struct TR_uni_req {

ulong PRIM_type; /* Always TR_UNI_REQ */

ulong DEST_length; /* Destination address length */

ulong DEST_offset; /* Destination address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

} TR_uni_req_t;

Parameters

The primitive has the following arguments:

PRIM type
Specifies the primitive type: always TR_UNI_REQ.

DEST length
Specifies the length of the protocol address to which to send the unidirectional invoca-
tion.

DEST offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins.

ORIG length
Specifies the length of the protocol address from which to send the unidirectional
invocation. Specification of the originating protocol address (ORIG length and
ORIG offset) is optional. When not specified the TR provider will implicitly associate
the local protocol address used in the bind service (see Section 4.1.2.1 [Transaction
Bind Request], page 28) with the primitive as the originating protocol address.

ORIG offset
Specifies the offset from the beginning of the M_PROTO message block where the protocol
address begins.

OPT length
Specifies the length of the protocol options associated with the unidirectional invoca-
tion.

68 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

OPT offset Specifies the offset from the beginning of the M_PROTO message block where the protocol
options begin.

Valid State

This primitive is valid in state TRS_IDLE. This primitive is only valid in connectionless mode.

New State

The new state remains unchanged.

Rules

Acknowledgements

This primitive does not require an acknowledgement.1 If a non-fatal error occurs, it is the responsi-
bility of the TR provider to report it with the TR_NOTICE_IND indication. Fatal errors are indicated
with the M_ERROR message type which results in the failure of all operating system service routines
on the stream. The allowable fatal errors are as follows:

[EPROTO] This error indicates one of the following unrecoverable protocol conditions:

— The TR service interface was found to be in an incorrect state.

— The amount of TR user data associated with the primitive defines an APDU
(ACSE Protocol Data Unit) larger than that allowed by the TR provider.

1 This is a TCAP operations class 4 or a ROSE operations class 5 transaction that requires neither a positive
or negative acknowledgement.

2014-10-25 69

Chapter 4: TRI Primitives

4.3.1.2 Transaction Unidirectional Indication

TR_UNI_IND

This primitive indicates to the TR user that a unidirectional invocation has been received from the
specified source address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA message
blocks containing user data for the association, where each M_DATA message block contains at least
one byte of data, structured as follows:

typedef struct TR_uni_ind {

ulong PRIM_type; /* Always TR_UNI_REQ */

ulong DEST_length; /* Destination address length */

ulong DEST_offset; /* Destination address offset */

ulong ORIG_length; /* Originating address length */

ulong ORIG_offset; /* Originating address offset */

ulong OPT_length; /* Options structure length */

ulong OPT_offset; /* Options structure offset */

} TR_uni_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type: always TR_UNI_IND.

DEST length
Indicates the length of the protocol address to which the message was sent. This is
not necessarily the same as the local protocol address to which the stream is bound.
The address provided here may contain additional information for some protocols. So,
for example, under TCAP, although the stream is bound to an SCCP subsystem, this
protocol address may contain the SCCP Global Title.

DEST offset
Indicates the offset from the start of the M_PROTO message block where the protocol
address begins.

ORIG length
Indicates the length of the protocol address from which the message was sent.

ORIG offset
Indicates the offset from the start of the M_PROTO message block where the protocol
address begins.

OPT length
Indicates the length of the protocol options that were associated with the received
message.

OPT offset Indicates the offset from the start of the M_PROTO message block where the protocol
options begin.

70 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Primitives

Valid State

This primitive is only issued in state TRS_IDLE. This primitive is only valid in connectionless mode.

New State

The new state remains unchanged.

Rules

The proper alignment of the destination address, originating address and protocol options in the
M_PROTO message block is not guaranteed.

2014-10-25 71

Chapter 4: TRI Primitives

4.3.1.3 Transaction Notice Indication

TR_NOTICE_IND

This primtiive indicates to the transaction user that a component of a transaction produced an error.

Format

The format of the message is one M_PCPROTOmessage block, followed by zero or more M_DATAmessage
blocks containing user data for the association, structured as follows:

typedef struct TR_notice_ind {

ulong PRIM_type; /* Always TR_NOTICE_IND */

ulong CORR_id; /* Correlation id */

ulong TRANS_id; /* Transaction id */

ulong REPORT_cause; /* SCCP return cause */

} TR_notice_ind_t;

Parameters

The primitive has the following arguments:

PRIM type
Indicates the primitive type. Always TR_NOTICE_IND.

CORR id Indicates the transaction user assigned transaction identifier.

TRANS id Indicates the transaction provider assigned transaction identifier.

REPORT cause
Indicates the defined protocol dependent error code.

Modes

This primitive is only issued in Operations Classes that provide negative acknowledgements.

Originator

This primitive is originated by the TR provider.

Valid State

This primitive is only valid in connectionless mode.

New State

The new state remains unchanged.

Rules

72 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Diagnostics Requirements

5 Diagnostics Requirements

There are two error handling facilities available to the TR user: one to handle non-fatal errors and
one to handle fatal errors.

5.1 Non-Fatal Errors

The non-fatal errors are those that a TR user can correct, and are reported in the form of an error
acknowledgement to the appropriate primitive in error. Only those primitive which require acknowl-
edgements may generate a non-fatal error acknowledgement. These acknowledgements always report
syntactical error in the specified primitive when the TR provider receives the primitive. The prim-
itive descriptions1 define those primitive and rules regarding acknowledgement for each primitive.
These errors are reported to the TR user with the TR_ERROR_ACK primitive, (see Section 4.1.4.2
[Transaction Error Acknowledgement], page 43), and give the TR user the option of reissuing the
TR service primitive that cause the error. The TR_ERROR_ACK primitive also indicates to the TR
user that no action was taken by the TR provider upon receipt of the primitive which cause the
error.

These errors do not change the state of the TR service interface as seen by the TR user. The state
of the interface after the issuance of a TR_ERROR_ACK primitive should be the same as it was before
the TR provider receive the interface primitive that was in error.

The allowable errors that can be reported on the receipt of a TR initiated primitive are presented
in the description of the appropriate primitives, see Chapter 4 [TRI Primitives], page 23.

5.2 Fatal Errors

Fatal errors are those that cannot be corrected by the TR user, or those errors that result in an
uncorrectable error in the interface or in the TR provider.

The most common of these errors are listed under the appropriate primitives (see Chapter 4 [TRI
Primitives], page 23). The transaction provider should issue fatal errors only if the transaction user
cannot correct the condition that caused the error or if the transaction provider has no means of
reporting a transaction user correctable error. If the transaction provider detects an uncorrectable
non-protocol error internal to the transaction provider, the provider should issue a fatal error to the
user.

Fatal errors are indicated to the transaction user with the STREAMS message type M_ERROR with the
UNIX System error [EPROTO]. This is the only type of error that the transaction provider should
use to indicate a fatal protocol error to the transaction user. The message M_ERROR will result in
the failure of all the operating system service routines on the stream. The only way for the user to
recover from a fatal error is to ensure that all processes close the file associated with the stream.
Then the user may reopen the file associated with the stream.

1 See Chapter 4 [TRI Primitives], page 23.

2014-10-25 73

Transaction Interface (TRI) Transaction Service Interface Sequence of Primitives

6 Transaction Service Interface Sequence of Primitives

The allowable sequence of primitives are described in the state diagrams and tables for both the
connection-oriented and connectionless mode mode transaction services described in Appendix B
[State/Event Tables], page 97.

6.1 Rules for State Maintenance

6.1.1 General Rules for State Maintenace

The following are rules regarding the maintenance of the state of the interface:

• It is the responsibility of the transaction provider to keep record of the state of the interface as
viewed by the transaction user.

• The transaction provider must never issue a primitive that places the interface out of state.

• The uninitialized state of a stream is the initial and final state, and it must be bound (see
Section 4.1.2.1 [Transaction Bind Request], page 28) before the transaction provider may view
it as an active stream.

• If the transaction provider sends a M_ERROR upstream, it should also drop any further messages
received on its write side of the stream.

6.1.2 Connection-Oriented Transaction Service Rules for State Maintenace

The following rules apply only to the connection-oriented mode transaction services:

• A transaction association end procedure can be initiated at any time during the transaction
association establishment or user data transfer phases.

• The state tables for the connection-oriented mode transaction service providers include the
management of the correlation and transaction identifiers when a transaction provider sends
multiple TR_BEGIN_IND indications or accepts multiple TR_BEGIN_REQ requests without waiting
for the response or confirmation to the previous indication or request. It is the responsibility
of the transaction provider not to change state until all the indications or requests have been
responded to or confirmed, therefore the provider should remain in the TRS_WRES_CIND or TRS_
WACK_CREQ state while there are any outstanding begin indications or requests pending response
or confirmation. The provider should change state appropriately when all the begin indications
or requests have been responded to or confirmed.

• The only time the state of the transaction service interface of a stream may be transferred to
another stream is when it is indicated in a TR_BEGIN_RES primitive. The following rules then
apply to the cooperating streams:

— The stream that is to accept the current state of the interface must be bound to an
appropriate protocol address and must be in the idle state.1

— The user transferring the current state of a stream must have the correct permissions for
the use of the protocol address bound to the accepting stream.

— The stream which transfers the state of the transaction interface must be placed into an
appropriate state after the completion of the transfer.

1 This is not really true for either TRI or TPI. The accepting stream can be bound or unbound, and for some
protocols may be bound to an address different or the same as the stream upon which the begin indication
was issued.

2014-10-25 75

Chapter 6: Transaction Service Interface Sequence of Primitives

6.2 Rules for Precedence of Primitives on a Stream

6.2.1 General Rules for Precedence of Primitives

The following rules apply to the precedence of transaction interface primitives with respect to their
position on a stream:2

• The transaction provider has responsibility for determining precedence of its stream write
queue, as per the rules defined in Appendix C [Primitive Precedence Tables], page 99. The
appendix specifies the rules for precedence for both the connection-oriented and connectionless
transaction services.

• The transaction user has the responsibility for determining precedence on its stream read queue,
as per the rules defined in Appendix C [Primitive Precedence Tables], page 99.

• All primitives on the stream are assumed to be placed on the queue in the correct sequence as
defined above.

6.2.2 Connection-Oriented Transaction Service Rules for Precedence of Primitives

The following rules apply only to the connection-oriented transaction services:

• There is no guarantee of delivery of user data once a TR_ABORT_REQ primitive has been issued.

6.3 Rules for Flushing Queues

6.3.1 General Rules for Flushing Queues

The following rules pertain to flushing of stream queues: (No other flushes should be needed to keep
the queues in the proper condition.)

• The transaction providers must be aware that they will receive M_FLUSH message from up-
stream. These flush requests are issued to ensure that the providers receive certain messages
and primitives. It is the responsibility of the providers to act appropriately as deemed necessary
by the providers.

• The transaction provider must send up a M_FLUSH message to flush both the read and write
queues after receiving a successful TR_UNBIND_REQ message and prior to issuing the TR_OK_ACK
primitive.

6.3.2 Connection-Oriented Transaction Service Rules for Flushing Queues

The following rules apply only to the connection-oriented transaction services:

• If the interface is in the TRS_DATA_XFER, TRS_WIND_ORDREL or TRS_WACK_ORDREL state, the
transaction provider must send up a M_FLUSH message to flush both the read and write queues
before sending up a TR_ABORT_IND.

• If the interface is in the TRS_DATA_XFER, TRS_WIND_ORDREL or TRS_WACK_ORDREL state, the
transaction provider must send up a M_FLUSH message to flush both the read and write queues
after receiving a successful TR_ABORT_REQ primitive and before issuing the TR_OK_ACK primitive.

2 The stream queue which contains a transaction user initiated primitives is referred to as the stream write
queue. The stream queue which contains the transaction provider initiated primitives is referred to as the
stream read queue.

76 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Addendum for ITU-T Conformance

Addendum for ITU-T Conformance

This section describes the formats and rules that are specified to ITU-T Q.771 operation. The adden-
dum must be used along with the generic TRI as defined in the main document when implementing
a TR provider that will be configured with the ITU-T Q.771 (TCAP) Transaction Sub-Layer.

Quality of Service: Model and Description

The “Quality of Service” characteristics apply to both connection-oriented and connectionless trans-
action services.

QoS Overview

QoS (Quality of Service) is described in terms of QoS parameters. There are two types of QoS
parameters:

1. Those that are “negotiated” on a per-association basis during transaction association estab-
lishment.1

2. Those that are not “negotiated” and their values are selected or determined by local manage-
ment methods.

TRI Primitives: Rules for ITU-T Q.771 Conformance

The following rules apply to the TRI primitives for ITU-T Q.771 (TCAP) compatibility:

Addressing

TCAP uses SCCP formatted addresses instead of ISO Presentation Layer addresses.

Address Format

The address format for a TCAP address is as follows:

Options

TCAP Level Options

Application Context Name

User Information

SCCP Level Options

SCCP Quality of Service Options

The TCAP interface uses protocol level T_SS7_SCCP for options at the SCCP level. SCCP QoS
parameters are communicated to the underlying transaction provider using the option name T_

SCCP_QOS. There are three QoS structure that can be used in this fashion as follows:

1 The connectionless transaction services do not support end-to-end QoS parameter negotiation.

2014-10-25 77

Addendum for ITU-T Conformance

Option Name Option Type Meaning

T_SCCP_QOS N_qos_sel_sccp_t For use with TR_UNI_REQ,

TR_BEGIN_REQ, TR_BEGIN_RES,

TR_CONT_REQ, TR_END_REQ,

TR_ABORT_REQ.

T_SCCP_QOS N_qos_opt_sel_sccp_t For use with TR_BEGIN_REQ,

TR_BEGIN_RES.

T_SCCP_QOS N_qos_range_sccp_t For use with TR_INFO_ACK.

Quality of service struct N qos sel sccp t has the following fields:

n qos type This is the NPI Quality of Service structure type and is always set to N_QOS_SEL_SCCP,
N_QOS_OPT_SEL_SCCP, or N_QOS_RANGE_SCCP.

protocol class
This is the protocol class. The protocol class field can be one of the following:

• N_QOS_PCLASS_0 (SCCP connectionless protocol class 0),

• N_QOS_PCLASS_1 (for SCCP connectionless protocol class 1),

• N_QOS_PCLASS_2 (for SCCP connection-oriented protocol class 2),

• N_QOS_PCLASS_3 (for SCCP connection-oriented protocol class 3) or

• QOS_UNKNOWN.

N_QOS_PCLASS_2 and N_QOS_PCLASS_3 are not applicable to TCAP.

option flags
If the options flags field has bit N_QOS_OPT_RETERR set then the SCCP will return the
PDU on error.

importance This is the importance of the message for consideration for SCCP flow control. This
value is not normally set by the user. It can be any integer number from 0 to 7, or
QOS_UNKNOWN.

sequence selection
This affects the SLS (Signalling Link Selection) value that will be used for protocol
classes N_QOS_PCLASS_0 and N_QOS_PCLASS_1. This value is not normally set by the
user and can be an integer value or QOS_UNKNOWN.

message priority
This affects the MP (Message Priority) value that will be used for specific messages in
all protocol classes. This value is not normally set by the use and can be any integer
value from 0 to 3 or the value QOS_UNKNOWN.

Supported Services

Common Transaction Services

Information Service

TR_INFO_REQ

TR_INFO_ACK

78 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Addendum for ITU-T Conformance

Parameters

The following discusses the values which may be returned in a TR_INFO_ACK primitive in response
to a TR_INFO_REQ primitive.

ASDU size Depending on the underlying SCCP layer, TCAP can have effectively no limit to the
amount of user data that can be sent in a particular transaction. Protocol variants or
versions of SCCP that support XUDT and segmentation-reassembly of protocol class 0
or 1 messages will set ASDU size to T_INFINITE (‘-1’). For protocol variants of SCCP
or other underlying network providers that do not support segmentation/reassembly
of long messages, the provider wills et ASDU size to the maximum size (number of
octets) of user data that can be guaranteed transferred when associated with a single
TR_BEGIN_RES or TR_CONT_REQ message.

EASDU size
TCAP has no expedited data service and the value of EASDU size is set to T_UNKNOWN

(‘-2’).

CDATA size
TCAP can send user data with the initial Begin (Query) or first Continue (Conversa-
tion) package and can also send Application Context and User Information in either
package. These messages correspond to TR-BEGIN and the first TR-CONTINUE
after receiving a TR-BEGIN and they correspond to TR_BEGIN_REQ and TR_BEGIN_

RES. Because the underlying SCCP connectionless network may support unlimited size
NSDUs, this value may be set to T_INFINITE (‘-1’) or may be set to the maximum
amount of user data (including Application Context, User Information and user data)
that can be sent or received in either package. This informs the user as to what size
to make data buffers associated with transaction begin indications and confirmations
(TR_BEGIN_IND, TR_BEGIN_CON) and how much data can be sent with transaction begin
requests and responses (TR_BEGIN_REQ, TR_BEGIN_RES).

DDATA size
TCAP can send transaction end data (user data) with the final End (Response) pack-
age. These messages correspond to the TR-END primitive and the TR_END_REQ or
TR_END_IND. Again, because the underlying SCCP connectionless network may sup-
port unlimited size NSDUs, this value may be set to T_INFINITE (‘-1’) or may be set
to the maximum amount of transaction end data that can be sent or received in the
End (Response) package. This informs the user as to what size to make data buffers
associated with transaction end indications (TR_END_IND) and how much data can be
sent with transaction end requests (TR_END_REQ).

ADDR size
This is the maximum TCAP address size that can be communicated across the in-
terface. This address size is the maximum size of the defined SCCP address struc-
ture (‘sizeof sccp_addr_t’) that also will include address digits up to a maximum
of SCCP_MAX_ADDR_LENGTH octets of digits. This informs the user as to what size it
should reserver for control buffers so as to receive control information without buffer
truncation.

OPT size This is the maximum size of the options field used in any TRI message (see Chapter 4
[TRI Primitives], page 23) and is the sum of the maximum option sizes of one of each
of the options that can occur together. This informs the user as to what size it should
reserve for control buffers to ensure that received control messages that include options
cna be contained within the buffer without truncation.

2014-10-25 79

Addendum for ITU-T Conformance

TIDU size Although a TCAP provider can support unlimited ASDU size, it cannot normally sup-
port unlimited TIDU size. This is because the underlying SCCP NSDU may be limited
in size. The TCAP provider is not responsible for segmenting user data sequences of-
fered to the provider from the user in an M_DATA message chain. This is the maximum
size of the TIDU which corresponds to the maximum size of the underlying NSDU.
Because the underlying SCCP provider may have no limit on the NSDU size (i.e, it
supports segmentation of connectionless NSDUs) this may be more in the manner of
a optimal recommendation to the user rather than an absolute maximum. Because of
this, a given TCAP provider might not reject TIDUs which are larger than this value.

SERV type There are two service types supported by a transaction provider: connection-oriented
transaction service (COTS) and connectionless transaction service (CLTS). CLTS is a
connectionless unidirectional transaction service with no error notification. COTS is a
connection-oriented transaction services with or without error notification. The value
reflected here is dependent on the setting of option T_ACSE_PCLASS or T_TCAP_OCLASS.

CURRENT state
Provides the current state of the transaction interface. TCAP providers use the same
states as other TRI providers.

PROVIDER flag
Unused.

TRI version
Set to the current version.

Address service

TR_ADDR_REQ

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

TR_OPTMGMT_ACK

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

80 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Addendum for ITU-T Conformance

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

TR_UNI_REQ

TR_UNI_IND

TR_NOTICE_IND

2014-10-25 81

Transaction Interface (TRI) Addendum for ANSI Conformance

Addendum for ANSI Conformance

This section describes the formats and rules that are specified to ANSI T1.114 operation. The adden-
dum must be used along with the generic TRI as defined in the main document when implementing
a TR provider that will be configured with the ANSI T1.114 (TCAP) Transaction Sub-Layer.1

Quality of Service: Model and Description

The “Quality of Service” characteristics apply to both connection-oriented and connectionless trans-
action services.

QoS Overview

QoS (Quality of Service) is described in terms of QoS parameters. There are two types of QoS
parameters:

1. Those that are “negotiated” on a per-association basis during transaction association estab-
lishment.2

2. Those that are not “negotiated” and their values are selected or determined by local manage-
ment methods.

TRI Primitives: Rules for ANSI T1.114 Conformance

The following rules apply to the TRI primitives for ANSI T1.114 (TCAP) compatibility:

Addressing

TCAP uses SCCP formatted addresses instead of ISO Presentation Layer addresses.

Address Format

The address format for a TCAP address is as follows:

Options

TCAP Level Options

Application Context Name

User Information

SCCP Level Options

SCCP Quality of Service Options

The TCAP interface uses protocol level T_SS7_SCCP for options at the SCCP level. SCCP QoS
parameters are communicated to the underlying transaction provider using the option name T_

SCCP_QOS. There are three QoS structure that can be used in this fashion as follows:

1 It should be noted that ANSI T1.114 does not provide a distinction between the TC and TR Sub-Layers
of TCAP, and do not specify a TC-User or TR-User interface at all. However, as it is still based on ITU-T
Recommendation X.219, there can exist an identifiable TR Sub-Layer interface within ANSI TCAP.

2 The connectionless transaction services do not support end-to-end QoS parameter negotiation.

2014-10-25 83

Addendum for ANSI Conformance

Option Name Option Type Meaning

T_SCCP_QOS N_qos_sel_sccp_t For use with TR_UNI_REQ,

TR_BEGIN_REQ, TR_BEGIN_RES,

TR_CONT_REQ, TR_END_REQ,

TR_ABORT_REQ.

T_SCCP_QOS N_qos_opt_sel_sccp_t For use with TR_BEGIN_REQ,

TR_BEGIN_RES.

T_SCCP_QOS N_qos_range_sccp_t For use with TR_INFO_ACK.

Quality of service struct N qos sel sccp t has the following fields:

n qos type This is the NPI Quality of Service structure type and is always set to N_QOS_SEL_SCCP,
N_QOS_OPT_SEL_SCCP, or N_QOS_RANGE_SCCP.

protocol class
This is the protocol class. The protocol class field can be one of the following:

• N_QOS_PCLASS_0 (SCCP connectionless protocol class 0),

• N_QOS_PCLASS_1 (for SCCP connectionless protocol class 1),

• N_QOS_PCLASS_2 (for SCCP connection-oriented protocol class 2),

• N_QOS_PCLASS_3 (for SCCP connection-oriented protocol class 3) or

• QOS_UNKNOWN.

N_QOS_PCLASS_2 and N_QOS_PCLASS_3 are not applicable to TCAP.

option flags
If the options flags field has bit N_QOS_OPT_RETERR set then the SCCP will return the
PDU on error.

importance This is the importance of the message for consideration for SCCP flow control. This
value is not normally set by the user. It can be any integer number from 0 to 7, or
QOS_UNKNOWN.

sequence selection
This affects the SLS (Signalling Link Selection) value that will be used for protocol
classes N_QOS_PCLASS_0 and N_QOS_PCLASS_1. This value is not normally set by the
user and can be an integer value or QOS_UNKNOWN.

message priority
This affects the MP (Message Priority) value that will be used for specific messages in
all protocol classes. This value is not normally set by the use and can be any integer
value from 0 to 3 or the value QOS_UNKNOWN.

Supported Services

Common Transaction Services

Information Service

TR_INFO_REQ

TR_INFO_ACK

84 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Addendum for ANSI Conformance

Parameters

The following discusses the values which may be returned in a TR_INFO_ACK primitive in response
to a TR_INFO_REQ primitive.

ASDU size Depending on the underlying SCCP layer, TCAP can have effectively no limit to the
amount of user data that can be sent in a particular transaction. Protocol variants or
versions of SCCP that support XUDT and segmentation-reassembly of protocol class 0
or 1 messages will set ASDU size to T_INFINITE (‘-1’). For protocol variants of SCCP
or other underlying network providers that do not support segmentation/reassembly
of long messages, the provider wills et ASDU size to the maximum size (number of
octets) of user data that can be guaranteed transferred when associated with a single
TR_BEGIN_RES or TR_CONT_REQ message.

EASDU size
TCAP has no expedited data service and the value of EASDU size is set to T_UNKNOWN

(‘-2’).

CDATA size
TCAP can send user data with the initial Begin (Query) or first Continue (Conversa-
tion) package and can also send Application Context and User Information in either
package. These messages correspond to TR-BEGIN and the first TR-CONTINUE
after receiving a TR-BEGIN and they correspond to TR_BEGIN_REQ and TR_BEGIN_

RES. Because the underlying SCCP connectionless network may support unlimited size
NSDUs, this value may be set to T_INFINITE (‘-1’) or may be set to the maximum
amount of user data (including Application Context, User Information and user data)
that can be sent or received in either package. This informs the user as to what size
to make data buffers associated with transaction begin indications and confirmations
(TR_BEGIN_IND, TR_BEGIN_CON) and how much data can be sent with transaction begin
requests and responses (TR_BEGIN_REQ, TR_BEGIN_RES).

DDATA size
TCAP can send transaction end data (user data) with the final End (Response) pack-
age. These messages correspond to the TR-END primitive and the TR_END_REQ or
TR_END_IND. Again, because the underlying SCCP connectionless network may sup-
port unlimited size NSDUs, this value may be set to T_INFINITE (‘-1’) or may be set
to the maximum amount of transaction end data that can be sent or received in the
End (Response) package. This informs the user as to what size to make data buffers
associated with transaction end indications (TR_END_IND) and how much data can be
sent with transaction end requests (TR_END_REQ).

ADDR size
This is the maximum TCAP address size that can be communicated across the in-
terface. This address size is the maximum size of the defined SCCP address struc-
ture (‘sizeof sccp_addr_t’) that also will include address digits up to a maximum
of SCCP_MAX_ADDR_LENGTH octets of digits. This informs the user as to what size it
should reserver for control buffers so as to receive control information without buffer
truncation.

OPT size This is the maximum size of the options field used in any TRI message (see Chapter 4
[TRI Primitives], page 23) and is the sum of the maximum option sizes of one of each
of the options that can occur together. This informs the user as to what size it should
reserve for control buffers to ensure that received control messages that include options
cna be contained within the buffer without truncation.

2014-10-25 85

Addendum for ANSI Conformance

TIDU size Although a TCAP provider can support unlimited ASDU size, it cannot normally sup-
port unlimited TIDU size. This is because the underlying SCCP NSDU may be limited
in size. The TCAP provider is not responsible for segmenting user data sequences of-
fered to the provider from the user in an M_DATA message chain. This is the maximum
size of the TIDU which corresponds to the maximum size of the underlying NSDU.
Because the underlying SCCP provider may have no limit on the NSDU size (i.e, it
supports segmentation of connectionless NSDUs) this may be more in the manner of
a optimal recommendation to the user rather than an absolute maximum. Because of
this, a given TCAP provider might not reject TIDUs which are larger than this value.

SERV type There are two service types supported by a transaction provider: connection-oriented
transaction service (COTS) and connectionless transaction service (CLTS). CLTS is a
connectionless unidirectional transaction service with no error notification. COTS is a
connection-oriented transaction services with or without error notification. The value
reflected here is dependent on the setting of option T_ACSE_PCLASS or T_TCAP_OCLASS.

CURRENT state
Provides the current state of the transaction interface. TCAP providers use the same
states as other TRI providers.

PROVIDER flag
Unused.

TRI version
Set to the current version.

Address service

TR_ADDR_REQ

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

TR_OPTMGMT_ACK

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

86 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Addendum for ANSI Conformance

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

TR_UNI_REQ

TR_UNI_IND

TR_NOTICE_IND

2014-10-25 87

Transaction Interface (TRI) Addendum for ETSI Conformance

Addendum for ETSI Conformance

ETSI Quality of Service Model and Description

QoS Overview

TRI Primitives: Rules for ETSI ETS 300 287 Conformance

Addressing

Address Format

Options

TCAP Level Options

SCCP Level Options

ETSI Supported Services

Common Transaction Services

Information service

TR_INFO_REQ

TR_INFO_ACK

Address service

TR_ADDR_REQ

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

2014-10-25 89

Addendum for ETSI Conformance

TR_OPTMGMT_ACK

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

TR_UNI_REQ

TR_UNI_IND

TR_NOTICE_IND

90 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Mapping TRI Primitives

Appendix A Mapping TRI Primitives

2014-10-25 91

Appendix A: Mapping TRI Primitives

A.1 Mapping TRI Primitives to ITU-T Q.771

92 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Mapping TRI Primitives

A.2 Mapping TRI Primitives to ANSI T1.114

2014-10-25 93

Appendix A: Mapping TRI Primitives

A.3 Mapping TRI Primitives to ITU-T X.219

A.3.1 State Mapping

A.3.2 Primitive Mapping

A.3.2.1 A-ASSOCIATE

Request

Indication

Response

Confirm

A.3.2.2 A-RELEASE

Request

Indication

Response

Confirm

A.3.2.3 A-ABORT

Request

Indication

A.3.2.4 A-P-ABORT

Indication

A.3.2.5 A-UNIT-DATA

Request

Indication

A.3.3 Parameter Mapping

94 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Mapping TRI Primitives

Application Context Name

Calling AP Title

Calling AE Qualifier

Calling AP Invocation-identifier

Calling AE Invocation-identifier

Called AP Title

Called AE Qualifier

Called AP Invocation-identifier

Called AE Invocation-identifier

Responding AP Title

Responding AE Qualifier

Responding AP Invocation-identifier

Responding AE Invocation-identifier

User Information

Result

Result Source

Diagnostic

Calling Presentation Address

Called Presentation Address

Responding Presentation Address

Presentation Context Definition List

Presentation Context Definition Result List

Default Presentation Context Name

2014-10-25 95

Appendix A: Mapping TRI Primitives

Default Presentation Context Result

Quality of Service

Session Requirements

Initial Sycnhronization Point Serial Number

Initial Assignment of Tokens

Session-connection Identifier

Reason

User Information

Result

Abort Source

User Information

Provider Reason

Authentication

Authentication-mechanism name

Authentication-value

ACSE Requriements

Diagnostic

Application Context Identifier

Application Context Name List

96 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) State/Event Tables

Appendix B State/Event Tables

2014-10-25 97

Transaction Interface (TRI) Primitive Precedence Tables

Appendix C Primitive Precedence Tables

2014-10-25 99

Transaction Interface (TRI) TRI Header File Listing

Appendix D TRI Header File Listing

#ifndef __SS7_TR_H__

#define __SS7_TR_H__

#define TR_INFO_REQ 1 /* Information request */

#define TR_BIND_REQ 2 /* Bind to network address */

#define TR_UNBIND_REQ 3 /* Unbind from network address */

#define TR_OPTMGMT_REQ 4 /* Options management request */

#define TR_UNI_REQ 5 /* Unidirectional request */

#define TR_BEGIN_REQ 6 /* Begin transaction request */

#define TR_BEGIN_RES 7 /* Begin transaction response */

#define TR_CONT_REQ 8 /* Continue transaction request */

#define TR_END_REQ 9 /* End transaction request */

#define TR_ABORT_REQ 10 /* Abort transaction request */

#define TR_ADDR_REQ 11 /* Address request */

#define TR_CAPABILITY_REQ 12 /* Capability request */

#define TR_INFO_ACK 13 /* Information acknowledgement */

#define TR_BIND_ACK 14 /* Bound to network address */

#define TR_OK_ACK 15 /* Success acknowledgement */

#define TR_ERROR_ACK 16 /* Error acknowledgement */

#define TR_OPTMGMT_ACK 17 /* Options management acknowledgement */

#define TR_UNI_IND 18 /* Unidirectional indication */

#define TR_BEGIN_IND 19 /* Begin transaction indication */

#define TR_BEGIN_CON 20 /* Begin transaction confirmation */

#define TR_CONT_IND 21 /* Continue transaction indication */

#define TR_END_IND 22 /* End transaction indication */

#define TR_ABORT_IND 23 /* Abort transaction indication */

#define TR_NOTICE_IND 24 /* Error indication */

#define TR_ADDR_ACK 25 /* Address acknowledgement */

#define TR_CAPABILITY_ACK 26 /* Capability acknowledgement */

#define TR_COORD_REQ 35 /* coordinated withdrawal request */

#define TR_COORD_RES 36 /* coordinated withdrawal response */

#define TR_COORD_IND 37 /* coordinated withdrawal indication */

#define TR_COORD_CON 38 /* coordinated withdrawal confirmation */

#define TR_STATE_REQ 39 /* subsystem state request */

#define TR_STATE_IND 40 /* subsystem state indication */

#define TR_PCSTATE_IND 41 /* pointcode state indication */

#define TR_TRAFFIC_IND 42 /* traffic mix indication */

#define TR_QOS_SEL1 0x0501

typedef struct {

t_scalar_t type; /* Always TR_QOS_SEL1 */

t_scalar_t flags; /* Return option */

t_scalar_t seq_ctrl; /* Sequence Control */

t_scalar_t priority; /* Message priority */

} TR_qos_sel1_t;

/*

* TRPI interface states

*/

#define TRS_UNBND 0 /**< Unbound. */

2014-10-25 101

Appendix D: TRI Header File Listing

#define TRS_WACK_BREQ 1 /**< Waiting for TR_BIND_REQ ack. */

#define TRS_WACK_UREQ 2 /**< Waiting for TR_UNBIND_REQ ack. */

#define TRS_IDLE 3 /**< Idle. */

#define TRS_WACK_OPTREQ 4 /**< Waiting for TR_OPTMGMT_REQ ack. */

#define TRS_WACK_CREQ 5 /**< Waiting for TR_BEGIN_REQ ack. */

#define TRS_WCON_CREQ 6 /**< Waiting for TR_BEGIN_REQ confirmation. */

#define TRS_WRES_CIND 7 /**< Waiting for TR_BEGIN_IND response. */

#define TRS_WACK_CRES 8 /**< Waiting for TR_BEGIN_RES ack. */

#define TRS_DATA_XFER 9 /**< Data transfer. */

#define TRS_WACK_DREQ6 10 /**< Waiting for TR_END_REQ/TR_ABORT_REQ ack. */

#define TRS_WACK_DREQ7 11 /**< Waiting for TR_END_REQ/TR_ABORT_REQ ack. */

#define TRS_WACK_DREQ9 12 /**< Waiting for TR_END_REQ/TR_ABORT_REQ ack. */

#define TRS_NOSTATES 13

/*

* TR_ERROR_ACK error return code values

*/

#define TRBADADDR 1 /* Incorrect address format/illegal address information */

#define TRBADOPT 2 /* Options in incorrect format or contain illegal information */

#define TRACCESS 3 /* User did not have proper permissions */

#define TRNOADDR 5 /* TR Provider could not allocate address */

#define TROUTSTATE 6 /* Primitive was issues in wrong sequence */

#define TRBADSEQ 7 /* Sequence number in primitive was incorrect/illegal */

#define TRSYSERR 8 /* UNIX system error occurred */

#define TRBADDATA 10 /* User data spec. outside range supported by TR provider */

#define TRBADFLAG 16 /* Flags specified in primitive were illegal/incorrect */

#define TRNOTSUPPORT 18 /* Primitive type not supported by the TR provider */

#define TRBOUND 19 /* Illegal second attempt to bind listener or default listener */

#define TRBADQOSPARAM 20 /* QOS values specified are outside the range supported by the TR provider */

#define TRBADQOSTYPE 21 /* QOS structure type specified is not supported by the TR provider */

#define TRBADTOKEN 22 /* Token used is not associated with an open stream */

#define TRNOPROTOID 23 /* Protocol id could not be allocated */

/*

* ASSOC_flags - association flags

*/

#define TR_PERMISSION (1<<0) /* permission to respond */

/*

* TR_INFO_REQ:- one M_PROTO or M_PCPROTO message block.

*/

typedef struct TR_info_req {

t_scalar_t PRIM_type; /* Always TR_INFO_REQ */

} TR_info_req_t;

/*

* TR_INFO_ACK:- one M_PCPROTO message block.

*/

typedef struct TR_info_ack {

t_scalar_t PRIM_type; /* Always TR_INFO_ACK */

t_scalar_t TSDU_size; /* maximum TR_CONT_REQ data size */

t_scalar_t ETSDU_size; /* maximum TR_UNI_REQ data size */

t_scalar_t CDATA_size; /* maximum TR_BEGIN_REQ data size */

t_scalar_t DDATA_size; /* maximum TR_END_REQ data size */

t_scalar_t ADDR_size; /* address size */

t_scalar_t OPT_size; /* maximum options size */

102 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

t_scalar_t TIDU_size; /* maximum SCCP-fragment data size */

t_scalar_t SERV_type; /* service type */

t_scalar_t CURRENT_state; /* current state */

t_scalar_t PROVIDER_flag; /* type of TR provider */

t_scalar_t TRPI_version; /* version # of trpi that is supported */

} TR_info_ack_t;

/*

* SERV_type - service type

*/

#define TR_STRUCTURED (1<<0) /* structured dialogues */

#define TR_UNSTRUCTURED (1<<1) /* unstructured dialogues */

/*

* PROVIDER_flag - provider flags

*/

#define TR_ITUT (1<<9) /* ITU-T based APPLICATION TCAP */

#define TR_ANSI (1<<10) /* ANSI based PRIVATE TCAP */

/*

* TR_BIND_REQ:- one M_PROTO message block.

*/

typedef struct TR_bind_req {

t_scalar_t PRIM_type; /* Always TR_BIND_REQ */

t_scalar_t ADDR_length; /* address length */

t_scalar_t ADDR_offset; /* address offset */

t_uscalar_t XACT_number; /* maximum outstanding transaction reqs. */

t_scalar_t BIND_flags; /* bind flags */

} TR_bind_req_t;

/*

* TR_BIND_ACK:- one M_PCPROTO message block.

*/

typedef struct TR_bind_ack {

t_scalar_t PRIM_type; /* Always TR_BIND_ACK */

t_scalar_t ADDR_length; /* address length */

t_scalar_t ADDR_offset; /* address offset */

t_uscalar_t XACT_number; /* open transactions */

t_uscalar_t TOKEN_value; /* value of "token" assigned to stream */

} TR_bind_ack_t;

/*

* TR_ADDR_REQ:- one M_PROTO or M_PCPROTO message block.

*/

typedef struct TR_addr_req {

t_scalar_t PRIM_type; /* Always TR_ADDR_REQ */

t_scalar_t TRANS_id; /* Transaction id */

} TR_addr_req_t;

/*

* TR_ADDR_ACK:- one M_PCPROTO or M_PCPROTO message block.

*/

typedef struct TR_addr_ack {

t_scalar_t PRIM_type; /* Always TR_ADDR_ACK */

t_scalar_t LOCADDR_length; /* local address length */

2014-10-25 103

Appendix D: TRI Header File Listing

t_scalar_t LOCADDR_offset; /* local address offset */

t_scalar_t REMADDR_length; /* remote address length */

t_scalar_t REMADDR_offset; /* remote address offset */

t_scalar_t TRANS_id; /* Transaction id */

} TR_addr_ack_t;

/*

* TR_CAPABILITY_REQ:- one M_PROTO or M_PCPROTO message block.

*/

typedef struct TR_capability_req {

t_scalar_t PRIM_type; /* Always TR_CAPABILITY_REQ */

t_uscalar_t CAP_bits1; /* Capability bits 1 */

} TR_capability_req_t;

/*

* TR_CAPABILITY_ACK:- of one M_PROTO or M_PCPROTO message block.

*

* Note that TRANS_id returns a spare transaction id that will not be allocated for

* some period of time in the future and can be used within a reasonable period by

* the caller.

*/

typedef struct TR_capability_ack {

t_scalar_t PRIM_type; /* Always TR_CAPABILITY_ACK */

t_uscalar_t CAP_bits1; /* Capability bits #1 */

struct TR_info_ack INFO_ack; /* Info acknowledgement. */

t_uscalar_t TOKEN_value; /* Accept token value. */

t_uscalar_t TRANS_id; /* Transaction id. */

} TR_capability_ack_t;

#define TRC1_INFO (1<<0) /* Request/contains TR_info_ack. */

#define TRC1_TOKEN (1<<1) /* Request/contains acceptor token. */

#define TRC1_TRANS_ID (1<<1) /* Request/contains TRANS_id. */

#define TRC1_CAP_BITS2 (1<<31) /* Contains extensions (unused). */

/*

* TR_UNBIND_REQ:- one M_PROTO message block.

*/

typedef struct TR_unbind_req {

t_scalar_t PRIM_type; /* Always TR_UNBIND_REQ */

} TR_unbind_req_t;

/*

* TR_OPTMGMT_REQ:- one M_PROTO or M_PCPROTO message block.

*/

typedef struct TR_optmgmt_req {

t_scalar_t PRIM_type; /* Always T_OPTMGMT_REQ */

t_scalar_t OPT_length; /* options length */

t_scalar_t OPT_offset; /* options offset */

t_scalar_t MGMT_flags; /* options data flags */

} TR_optmgmt_req_t;

/*

* TR_OPTMGMT_ACK:- one M_PCPROTO message block.

*/

typedef struct TR_optmgmt_ack {

t_scalar_t PRIM_type; /* Always T_OPTMGMT_ACK */

104 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

t_scalar_t OPT_length; /* options length */

t_scalar_t OPT_offset; /* options offset */

t_scalar_t MGMT_flags; /* options data flags */

} TR_optmgmt_ack_t;

/*

* TR_OK_ACK:- one M_PCPROTO message block.

*/

typedef struct TR_ok_ack {

t_scalar_t PRIM_type; /* Always T_OK_ACK */

t_scalar_t CORRECT_prim; /* correct primitive */

} TR_ok_ack_t;

/*

* TR_ERROR_ACK:- one M_PCPROTO message block.

*/

typedef struct TR_error_ack {

t_scalar_t PRIM_type; /* Always T_ERROR_ACK */

t_scalar_t ERROR_prim; /* primitive in error */

t_scalar_t TRPI_error; /* TRPI error code */

t_scalar_t UNIX_error; /* UNIX error code */

} TR_error_ack_t;

/*

* TR_UNI_REQ. This primitive consists of one M_PROTO message block followed

* by one or more M_DATA blocks containing the dialogue portion and component

* sequence for the message.

*/

typedef struct TR_uni_req {

t_scalar_t PRIM_type; /* Always TR_UNI_REQ */

t_scalar_t DEST_length; /* Destination address length */

t_scalar_t DEST_offset; /* Destination address offset */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

} TR_uni_req_t;

/*

* TR_UNI_IND. This primitive consists of one M_PROTO message block followed

* by one or more M_DATA blocks containing the dialogue portion and component

* sequence for the message. Options may contain SCCP quality of service options

* and TCAP protocol variant.

*/

typedef struct TR_uni_ind {

t_scalar_t PRIM_type; /* Always TR_UNI_REQ */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t DEST_length; /* Destination address length */

t_scalar_t DEST_offset; /* Destination address offset */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

} TR_uni_ind_t;

/*

2014-10-25 105

Appendix D: TRI Header File Listing

* TR_BEGIN_REQ. This primitive consists of one M_PROTO message block followed by

* zero or more M_DATA blocks containing the dialogue portion and component sequence

* of the transaction. Options may contain SCCP quality of service parameters and

* TCAP protocol variant.

*/

typedef struct TR_begin_req {

t_scalar_t PRIM_type; /* Always TR_BEGIN_REQ */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t DEST_length; /* Destination address length */

t_scalar_t DEST_offset; /* Destination address offset */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

} TR_begin_req_t;

/*

* TR_BEGIN_IND:- one M_PROTO message block followed by one or more M_DATA message

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters and TCAP

* protocol variant.

*/

typedef struct TR_begin_ind {

t_scalar_t PRIM_type; /* Always TR_BEGIN_IND */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t DEST_length; /* Destination address length */

t_scalar_t DEST_offset; /* Destination address offset */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

} TR_begin_ind_t;

/*

* TR_BEGIN_RES:- one M_PROTO message block followed by one or more M_DATA message

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters.

*

* This primitive represents the first TR-CONTINUE response to a TR-BEGIN

* indication.

*/

typedef struct TR_begin_res {

t_scalar_t PRIM_type; /* Always TR_BEGIN_RES */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

t_scalar_t ACCEPTOR_id; /* Token of accepting stream */

} TR_begin_res_t;

/*

* TR_BEGIN_CON: - one M_PROTO message block followed by one or more M_DATA message

106 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters.

*

* This primitive represents the first TR-CONTINUE configuration of a

* TR-BEGIN request.

*/

typedef struct TR_begin_con {

t_scalar_t PRIM_type; /* Always TR_BEGIN_CON */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

} TR_begin_con_t;

/*

* TR_CONT_REQ: - one M_PROTO message block followed by one or more M_DATA message

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters.

*/

typedef struct TR_cont_req {

t_scalar_t PRIM_type; /* Always TR_CONT_REQ */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

} TR_cont_req_t;

/*

* TR_CONT_IND:- one M_PROTO message block followed by one or more M_DATA message

* blocks contianing the dialogue oprtion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters.

*/

typedef struct TR_cont_ind {

t_scalar_t PRIM_type; /* Always TR_CONT_IND */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ASSOC_flags; /* Association flags */

} TR_cont_ind_t;

/*

* TR_END_REQ:- one M_PROTO message block followed by zero or more M_DATA message

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters. Attached

* M_DATA message blocks and SCCP QoS parameters are ignored for prearranged

* termination scenarios.

*/

typedef struct TR_end_req {

t_scalar_t PRIM_type; /* Always TR_END_REQ */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t TERM_scenario; /* Termination scenario */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

} TR_end_req_t;

2014-10-25 107

Appendix D: TRI Header File Listing

/*

* TERM_scenario - termination scenarios

*/

#define TR_TERM_UNSPECIFIED 0 /* termination unspecified */

#define TR_TERM_BASIC 1 /* termination basic */

#define TR_TERM_PREARRANGED 2 /* termination prearranged */

/*

* TR_END_IND:- one M_PROTO message block followed by zero or more M_DATA message

* blocks containing the dialogue portion and component sequence for the

* transaction. Options may contain SCCP quality of service parameters.

*/

typedef struct TR_end_ind {

t_scalar_t PRIM_type; /* Always TR_END_IND */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

} TR_end_ind_t;

/*

* TR_ABORT_REQ

*/

typedef struct TR_abort_req {

t_scalar_t PRIM_type; /* Always TR_ABORT_REQ */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t ABORT_cause; /* Cause of the abort */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

} TR_abort_req_t;

/*

* TR_ABORT_IND.

*/

typedef struct TR_abort_ind {

t_scalar_t PRIM_type; /* Always TR_ABORT_IND */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t OPT_length; /* Options structure length */

t_scalar_t OPT_offset; /* Options structure offset */

t_scalar_t ABORT_cause; /* Cause of the abort */

t_scalar_t ORIGINATOR; /* Originator P or U */

} TR_abort_ind_t;

/*

* ABORT_cause - abort causes

*/

/* [APPLICATION 10] IMPLICIT INTEGER (0x4a01xx) */

#define TR_A_UNREC_MSG_TYPE 0x00 /* unrecognized message type */

#define TR_A_UNREC_TRANS_ID 0x01 /* unrecognized xact id */

#define TR_A_BAD_XACT_PORTION 0x02 /* badly formatted xact portion */

#define TR_A_INCORRECT_XACT_PORTION 0x03 /* incorrect xact portion */

#define TR_A_RESOURCE_LIMITATION 0x04 /* resource limitation */

108 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

/* [PRIVATE 27] IMPLICIT INTEGER (0xd701xx) */

#define TR_P_UNREC_PKG_TYPE 0x01 /* unrecognized package type */

#define TR_P_INCORRECT_XACT_PORTION 0x02 /* incorrect xact portion */

#define TR_P_BAD_XACT_PORTION 0x03 /* badly structured xact portion */

#define TR_P_UNASSIGNED_RESP_TRANS_ID 0x04 /* unassigned responding xact id */

#define TR_P_PERM_TO_RELEASE_PROB 0x05 /* permission to release problem */

#define TR_P_RESOURCE_UNAVAIL 0x06 /* resource unavailable */

#define TR_P_UNREC_DIALOG_PORTION_ID 0x07 /* unrecognized dialog portion id */

#define TR_P_BAD_DIALOG_PORTION 0x08 /* badly structured dialog portion */

#define TR_P_MISSING_DIALOG_PORTION 0x09 /* missing dialog portion */

#define TR_P_INCONSIST_DIALOG_PORTION 0x0a /* inconsistent dialog portion */

/*

* ORIGINATOR - originator of abort

*/

#define TR_UNKNOWN 0x00 /* originator unknown */

#define TR_USER 0x01 /* remote user */

#define TR_PROVIDER 0x02 /* local or remote provider */

/*

* TR_NOTICE_IND.

*/

typedef struct TR_notice_ind {

t_scalar_t PRIM_type; /* Always TR_NOTICE_IND */

t_scalar_t TRANS_id; /* Transaction id */

t_scalar_t DEST_length; /* Destination address length */

t_scalar_t DEST_offset; /* Destination address offset */

t_scalar_t ORIG_length; /* Originating address length */

t_scalar_t ORIG_offset; /* Originating address offset */

t_scalar_t REPORT_cause; /* SCCP return cause */

} TR_notice_ind_t;

/*

* REPORT_cause - report causes

*

* These constants have the same value as the NPI-SCCP ERROR_types for N_UDERROR_IND and

* N_NOTICE_IND.

*/

#define TR_RC_NO_ADDRESS_TYPE_TRANSLATION 0x2000

#define TR_RC_NO_ADDRESS_TRANSLATION 0x2001

#define TR_RC_SUBSYSTEM_CONGESTION 0x2002

#define TR_RC_SUBSYSTEM_FAILURE 0x2003

#define TR_RC_UNEQUIPPED_USER 0x2004

#define TR_RC_MTP_FAILURE 0x2005

#define TR_RC_NETWORK_CONGESTION 0x2006

#define TR_RC_UNQUALIFIED 0x2007

#define TR_RC_MESSAGE_TRANSPORT_ERROR 0x2008

#define TR_RC_LOCAL_PROCESSING_ERROR 0x2009

#define TR_RC_NO_REASSEMBLY_AT_DESTINATION 0x200a

#define TR_RC_SCCP_FAILURE 0x200b

#define TR_RC_SCCP_HOP_COUNTER_VIOLATION 0x200c

#define TR_RC_SEGMENTATION_NOT_SUPPORTED 0x200d

#define TR_RC_SEGMENTATION_FAILURE 0x200e

#define TR_RC_MESSAGE_CHANGE_FAILURE 0x20f7

2014-10-25 109

Appendix D: TRI Header File Listing

#define TR_RC_INVALID_INS_ROUTING_REQUEST 0x20f8

#define TR_RC_INVALID_INSI_ROUTING_REQUEST 0x20f9

#define TR_RC_UNAUTHORIZED_MESSAGE 0x20fa

#define TR_RC_MESSAGE_INCOMPATIBILITY 0x20fb

#define TR_RC_CANNOT_PERFORM_ISNI_CONSTRAINED_ROUTING 0x20fc

#define TR_RC_REDUNDANT_ISNI_CONSTRAINED_ROUTING_INFO 0x20fd

#define TR_RC_UNABLE_TO_PERFORM_ISNI_IDENTIFICATION 0x20fe

/*

* TR_COORD_REQ.

*/

typedef struct TR_coord_req {

t_scalar_t PRIM_type; /* alwyas TR_COORD_REQ */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

} TR_coord_req_t;

/*

* TR_COORD_RES.

*/

typedef struct TR_coord_res {

t_scalar_t PRIM_type; /* always TR_COORD_RES */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

} TR_coord_res_t;

/*

* TR_COORD_IND.

*/

typedef struct TR_coord_ind {

t_scalar_t PRIM_type; /* alwyas TR_COORD_IND */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

t_scalar_t SMI; /* subsystem multiplicity indicator */

} TR_coord_ind_t;

/*

* TR_COORD_CON.

*/

typedef struct TR_coord_con {

t_scalar_t PRIM_type; /* always TR_COORD_CON */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

t_scalar_t SMI; /* subsystem multiplicity indicator */

} TR_coord_con_t;

/*

* TR_STATE_REQ.

*/

typedef struct TR_state_req {

t_scalar_t PRIM_type; /* always TR_STATE_REQ */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

t_scalar_t STATUS; /* user status */

} TR_state_req_t;

110 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

/*

* TR_STATE_IND.

*/

typedef struct TR_state_ind {

t_scalar_t PRIM_type; /* always TR_STATE_IND */

t_scalar_t ADDR_length; /* affected subsystem */

t_scalar_t ADDR_offset;

t_scalar_t STATUS; /* user status */

t_scalar_t SMI; /* subsystem multiplicity indicator */

} TR_state_ind_t;

/*

* SMI - subsystem multiplicity indicator

*

* These constants are the same as the values of the protocol field in ITU-T Rec. Q.713 (2001)

* and ANSI T1.112/2000.

*/

#define TR_SMI_MULTIPLICITY_UNKNOWN 0

#define TR_SMI_SOLITARY 1

#define TR_SMI_DUPLICATED 2

/*

* TR_PCSTATE_IND.

*/

typedef struct TR_pcstate_ind {

t_scalar_t PRIM_type; /* always TR_PCSTATE_IND */

t_scalar_t ADDR_length; /* affected point code */

t_scalar_t ADDR_offset;

t_scalar_t STATUS; /* status */

} TR_pcstate_ind_t;

/*

* STATUS - subsystem status for use in TR_STATE and TR_PCSTATE primitives.

*

* These constants and macros are the same as used by SCCP in N_UDERROR_IND reports. In the

* macros, the argument "cong" is a congestion status or restricted importance level from 0 to

* 8.

*/

/* these two are application only to TR_STATE primitives */

#define TR_STATUS_USER_IN_SERVICE 1

#define TR_STATUS_USER_OUT_OF_SERVICE 2

/* the following are applicable to TR_PCSTATE primitives */

#define TR_STATUS_REMOTE_SCCP_AVAILABLE 3

#define TR_STATUS_REMOTE_SCCP_UNAVAILABLE 4

#define TR_STATUS_REMOTE_SCCP_UNEQUIPPED 5

#define TR_STATUS_REMOTE_SCCP_INACCESSIBLE 6

#define TR_STATUS_REMOTE_SCCP_CONGESTED(cong) (7 + cong)

#define TR_STATUS_SIGNALLING_POINT_INACCESSIBLE 16

#define TR_STATUS_SIGNALLING_POINT_CONGESTED(cong) (17 + cong)

#define TR_STATUS_SIGNALLING_POINT_ACCESSIBLE 26

/*

* TR_TRAFFIC_IND

2014-10-25 111

Appendix D: TRI Header File Listing

*/

typedef struct TR_traffic_ind {

t_scalar_t PRIM_type; /* always TR_TRAFFIC_IND */

t_scalar_t ADDR_length; /* affected user */

t_scalar_t ADDR_offset;

t_scalar_t TRAFFIC_mix; /* traffic mix */

} TR_traffic_ind_t;

/*

* TRAFFIC_mix - offered traffic mix

*

* These constants and macros are the same as used by NPI-SCCP in N_TRAFFIC_IND primitives.

*/

#define TR_TMIX_ALL_PREFFERED_NO_BACKUP 1

#define TR_TMIX_ALL_PREFERRED_SOME_BACKUP 2

#define TR_TMIX_ALL_PREFERRED_ALL_BACKUP 3

#define TR_TMIX_SOME_PREFERRED_NO_BACKUP 4

#define TR_TMIX_SOME_PREFERRED_SOME_BACKUP 5

#define TR_TMIX_NO_PREFERRED_NO_BACKUP 6

#define TR_TMIX_ALL 7

#define TR_TMIX_SOME 8

#define TR_TMIX_NONE 9

union TR_primitives {

t_scalar_t type;

struct TR_info_req info_req;

struct TR_bind_req bind_req;

struct TR_unbind_req unbind_req;

struct TR_optmgmt_req optmgmt_req;

struct TR_uni_req uni_req;

struct TR_begin_req begin_req;

struct TR_begin_res begin_res;

struct TR_cont_req cont_req;

struct TR_end_req end_req;

struct TR_abort_req abort_req;

struct TR_addr_req addr_req;

struct TR_capability_req capability_req;

struct TR_info_ack info_ack;

struct TR_bind_ack bind_ack;

struct TR_ok_ack ok_ack;

struct TR_error_ack error_ack;

struct TR_optmgmt_ack optmgmt_ack;

struct TR_uni_ind uni_ind;

struct TR_begin_ind begin_ind;

struct TR_begin_con begin_con;

struct TR_cont_ind cont_ind;

struct TR_end_ind end_ind;

struct TR_abort_ind abort_ind;

struct TR_notice_ind notice_ind;

struct TR_addr_ack addr_ack;

struct TR_capability_ack capability_ack;

struct TR_coord_req coord_req;

struct TR_coord_res coord_res;

struct TR_coord_ind coord_ind;

struct TR_coord_con coord_con;

struct TR_state_req state_req;

112 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) TRI Header File Listing

struct TR_state_ind state_ind;

struct TR_pcstate_ind pcstate_ind;

struct TR_traffic_ind traffic_ind;

};

#endif /* __SS7_TR_H__ */

2014-10-25 113

Transaction Interface (TRI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of the
signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer of data
between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling data
link interface.

SDL user

The user-level application or user-level or kernel-level protocol that accesses the services
of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user initializes a
Stream and attaches a PPA address to the Stream. Primitives in this phase generate
local operations only.

PPA

The point at which a system attaches itself to a physical communications medium.

PPA identifier
An identifier of a particular physical medium over which communication transpires.

2014-10-25 115

Transaction Interface (TRI) Acronyms

Acronyms

ITU-T International Telecommunications Union - Telecom Sector
PPA Physical Point of Attachment
SDLI Signalling Data Link Interface
SDL SDU Signalling Data Link Service Data Unit
SDL Signalling Data Link

2014-10-25 117

Transaction Interface (TRI) References

References

1. ITU-T Recommendation X.210, (Geneva, 1993), “Information Technology — Open Systems
Interconnection — Basic reference model: Conventions for the definition of OSI services,”
ISO/IEC 10731:1994.

2. ITU-T Recommendation X.217, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Service definition for the Association Control Service Element,” ISO/IEC
8649:1996.

3. ITU-T Recommendation X.227, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Connection-oriented protocol for the Association Control Service Element:
Protocol Specification,” ISO/IEC 8650-1.

4. ITU-T Recommendation X.237, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connectionless protocol for the Association Control Service Element: Protocol
Specification,” ISO/IEC 10035-1 : 1995.

5. ITU-T Recommendation X.216, (Geneva, 1994), “Information Technology — Open Systems
Interconnection — Presentation service definition,” ISO/IEC 8822:1994.

6. ITU-T Recommendation X.226, (Geneva, 1994), “Information Technology — Open Systems In-
terconnection — Connection-oriented presentation protocol: Protocol specification,” ISO/IEC
8823-1:1994.

7. ITU-T Recommendation X.236, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connectionless presentation protocol: Protocol specification,” ISO/IEC 9576-
1:1995.

8. ITU-T Recommendation X.215, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Session service definition,” ISO/IEC 8326:1996.

9. ITU-T Recommendation X.225, (Geneva, 1995), “Information Technology — Open Systems In-
terconnection — Connection-oriented session protocol: Protocol specification,” ISO/IEC 8327-
1:1996.

10. ITU-T Recommendation X.235, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Connectionless session protocol: Protocol specification,” ISO/IEC 9548-
1:1995.

11. ITU-T Recommendation X.214, (Geneva, 1995), “Information Technology — Open Systems
Interconnection — Transport service definition,” ISO/IEC 8072:1996.

12. ITU-T Recommendation X.224

13. ITU-T Recommendation Q.700

14. ITU-T Recommendation Q.701

15. ITU-T Recommendation Q.702

16. ITU-T Recommendation Q.703

17. ITU-T Recommendation Q.704

18. Geoffrey Gerrien, “CDI - Application Program Interface Guide,” Gcom, Inc., March 1999.

19. ITU-T Recommendation Q.771, (Geneva, 1993), “Signalling System No. 7 — Functional de-
scription of transaction capabilities,” (White Book).

2014-10-25 119

Transaction Interface (TRI) Licenses

Licenses

All code presented in this manual is licensed under the [GNU Affero General Public License],
page 121. The text of this manual is licensed under the [GNU Free Documentation License], page 131,
with no invariant sections, no front-cover texts and no back-cover texts. Please note, however, that
it is just plain wrong to modify statements of, or attribute statements to, the Author or OpenSS7
Corporation.

GNU Affero General Public License

The GNU Affero General Public License.
Version 3, 19 November 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of
works, specifically designed to ensure cooperation with the community in the case of network server
software.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, our General Public Licenses are intended to guarantee
your freedom to share and change all versions of a program–to make sure it remains free software
for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License which gives you legal permission to copy,
distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions
of the program, if they receive widespread use, become available for other developers to incorpo-
rate. Many developers of free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail to come about. The
GNU General Public License permits making a modified version and letting the public access it on
a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the
modified source code becomes available to the community. It requires the operator of a network
server to provide the source code of the modified version running there to the users of that server.
Therefore, public use of a modified version, on a publicly accessible server, gives the public access
to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to
accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

2014-10-25 121

http://fsf.org/

Licenses texi/agpl3.texi

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System Li-
braries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the

122 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

source code for shared libraries and dynamically linked subprograms that the work is specif-
ically designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work
is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant
date.

2014-10-25 123

Licenses texi/agpl3.texi

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it
does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers

124 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

2014-10-25 125

Licenses texi/agpl3.texi

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-
ing of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing
or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

126 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other
than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to

2014-10-25 127

Licenses texi/agpl3.texi

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies
of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified
version must prominently offer all users interacting with it remotely through a network (if
your version supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network server at no
charge, through some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered by version
3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU General Public License
into a single combined work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the work with which it is combined
will remain governed by version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

128 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU Affero General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify
a version number of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero
General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

2014-10-25 129

Licenses

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a network, you should also make sure that
it provides a way for users to get its source. For example, if your program is a web application, its
interface could display a “Source” link that leads users to an archive of the code. There are many
ways you could offer source, and different solutions will be better for different programs; see section
13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU AGPL, see http://www.gnu.org/licenses/.

130 Version 1.1 Rel. 7.20141001

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Transaction Interface (TRI) Licenses

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

2014-10-25 131

http://fsf.org/

Licenses texi/fdl13.texi

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup, Tex-
info input format, LaTEX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

132 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

2014-10-25 133

Licenses texi/fdl13.texi

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

134 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Licenses

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

2014-10-25 135

Licenses texi/fdl13.texi

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.

org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

136 Version 1.1 Rel. 7.20141001

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Transaction Interface (TRI) Licenses

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.”
line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

2014-10-25 137

Transaction Interface (TRI) Index

Index

A
ABORT_cause . 64, 66
ADDR_length . 28, 30, 31
ADDR_offset . 28, 30
ADDR_size . 26, 79, 85
AIDU_size . 27
ASDU_size . 26, 27, 79, 85
ASSOC_flags 45, 48, 50, 53, 56, 58

B
BIND_flags . 29

C
CDATA_size . 26, 27, 79, 85
CORR_id . 45, 53, 62, 66, 72
CORRECT_prim . 42
CURRENT_state . 27, 80, 86

D
DDATA_size . 26, 27, 79, 85
DEST_length 45, 46, 48, 49, 68, 70
DEST_offset . 46, 48, 49, 68, 70

E
EASDU_size . 26, 27, 79, 85
EPROTO . 57, 69, 73
ERROR_prim . 43

G
getmsg(2s) . 9

L
license, AGPL . 121
license, FDL . 131
license, GNU Affero General Public License . . . 121
license, GNU Free Documentation License 131
LOCADDR_length . 35, 36
LOCADDR_offset . 35, 36

M
M_DATA 9, 45, 48, 50, 53, 55, 57, 58, 60, 62, 68,

70, 72, 80, 86
M_ERROR . 57, 69, 73, 75
M_FLUSH . 76
M_PCPROTO 9, 24, 26, 30, 35, 37, 39, 42, 43, 72

M_PROTO . . . 9, 28, 32, 33, 37, 45, 46, 48, 49, 50, 53,
54, 55, 56, 57, 58, 60, 62, 64, 66, 68, 69, 70, 71

MGMT_flags . 37, 39, 40
MORE_DATA_FLAG . 56

N
N_QOS_OPT_RETERR . 78, 84
N_QOS_OPT_SEL_SCCP . 78, 84
N_QOS_PCLASS_0 . 78, 84
N_QOS_PCLASS_1 . 78, 84
N_QOS_PCLASS_2 . 78, 84
N_QOS_PCLASS_3 . 78, 84
N_QOS_RANGE_SCCP . 78, 84
N_QOS_SEL_SCCP . 78, 84

O
OPT_length . . 37, 39, 40, 46, 48, 49, 50, 53, 56, 58,

60, 62, 64, 66, 68, 70
OPT_offset . . 37, 39, 46, 49, 50, 53, 56, 58, 60, 62,

64, 66, 69, 70
OPT_size . 26, 79, 85
ORIG_length 46, 48, 49, 50, 53, 54, 68, 70
ORIG_offiset . 54
ORIG_offset 46, 48, 49, 50, 53, 54, 68, 70
ORIGINATOR . 66

P
PRIM_type . . . 24, 26, 28, 30, 32, 33, 35, 37, 39, 42,

43, 45, 48, 50, 53, 56, 58, 60, 62, 64, 66, 68, 70,
72

PROVIDER_flag . 27, 80, 86
putmsg(2s) . 9

Q
QOS_UNKNOWN . 78, 84

R
REMADDR_length . 35, 36
REMADDR_offset . 35, 36
REPORT_cause . 72

S
SCCP_MAX_ADDR_LENGTH . 79, 85
SERV_type . 27, 80, 86
STREAMS . 3, 7

2014-10-25 139

Index

T
T_ACSE_PCLASS . 80, 86
T_CURRENT . 39
T_DEFAULT . 39
T_INFINITE . 79, 85
T_MORE . 55
T_NEGOTIATE . 40
T_SCCP_QOS . 77, 83
T_SS7_SCCP . 77, 83
T_TCAP_OCLASS . 80, 86
T_UNKNOWN . 79, 85
TERM_scenario . 60
TIDU_size . 55, 57, 80, 86
TOKEN_value . 30
TR_ABORT_IND . 18, 20
TR_ABORT_IND 47, 57, 66, 76, 81, 87, 90
TR_abort_ind_t . 66
TR_ABORT_REQ . 16
TR_ABORT_REQ . 18, 19
TR_ABORT_REQ 63, 64, 76, 81, 87, 90
TR_abort_req_t . 64
TR_ADDR_ACK . 33, 35, 80, 86, 89
TR_addr_ack_t . 35
TR_ADDR_REQ 33, 35, 36, 80, 86, 89
TR_addr_req_t . 33
TR_BEGIN_CON . 17
TR_BEGIN_CON 47, 53, 56, 58, 60, 62, 63, 64, 66,

79, 81, 85, 87, 90
TR_begin_con_t . 53
TR_BEGIN_IND . 16
TR_BEGIN_IND . 17
TR_BEGIN_IND 48, 56, 58, 60, 62, 64, 66, 75, 79,

81, 85, 87, 90
TR_begin_ind_t . 48
TR_BEGIN_REQ 16, 45, 53, 57, 63, 75, 79, 80, 85,

86, 90
TR_begin_req_t . 45
TR_BEGIN_RES 16, 50, 63, 75, 79, 81, 85, 87, 90
TR_begin_res_t . 50
TR_BIND_ACK . 13
TR_BIND_ACK . 29, 30, 80, 86, 89
TR_bind_ack_t . 30
TR_BIND_REQ . 13
TR_BIND_REQ 28, 30, 31, 80, 86, 89
TR_bind_req_t . 28
TR_CHECK . 37, 40
TR_CLTRS . 27
TR_CONT_IND . 17
TR_CONT_IND . 56, 58, 81, 87, 90
TR_cont_ind_t . 58
TR_CONT_REQ . 17
TR_CONT_REQ . . 55, 56, 57, 58, 59, 79, 81, 85, 87, 90
TR_cont_req_t . 55
TR_CURRENT . 37, 40
TR_DEFAULT . 37, 40
TR_END_IND . 18

TR_END_IND 47, 62, 79, 81, 85, 87, 90
TR_end_ind_t . 62
TR_END_REQ . 16
TR_END_REQ . 18
TR_END_REQ . . . 49, 54, 59, 60, 63, 79, 81, 85, 87, 90
TR_end_req_t . 60
TR_ERROR_ACK 15, 25, 29, 31, 32, 33, 38, 40, 43,

47, 51, 61, 65, 73
TR_error_ack_t . 43
TR_FAILURE . 39, 40
TR_INFO_ACK . 13
TR_INFO_ACK . . 24, 25, 26, 55, 57, 78, 79, 84, 85, 89
TR_info_ack_t . 26
TR_INFO_REQ . 13
TR_INFO_REQ 24, 26, 27, 78, 79, 84, 85, 89
TR_info_req_t . 24
TR_MORE_DATA_FLAG . 56, 57, 58
TR_NEGOTIATE . 37, 40
TR_NO_PERMISSION 46, 49, 51, 54, 56, 58, 59
TR_NOTICE_IND 21, 69, 72, 81, 87, 90
TR_notice_ind_t . 72
TR_NOTSUPPORT . 39
TR_OK_ACK . 14
TR_OK_ACK 32, 42, 51, 61, 65, 76
TR_ok_ack_t . 42
TR_OPGMGMT_REQ . 40
TR_OPMGMT_ACK . 40
TR_OPTMGMT_ACK 38, 39, 40, 80, 86, 90
TR_optmgmt_ack_t . 39
TR_OPTMGMT_REQ . 14
TR_OPTMGMT_REQ 37, 39, 40, 41, 55, 80, 86, 89
TR_optmgmt_req_t . 37
TR_PABORT_IND . 63
TR_PARTSUCCESS . 40
TR_PROVIDER . 66
TR_RC_FLAG . 56, 57, 58, 59
TR_READONLY . 39
TR_SEQ_ASSURANCE . 46, 50, 56
TR_SUCCESS . 40
TR_UABORT_IND . 63
TR_UNBIND_REQ . 14
TR_UNBIND_REQ . 32, 76
TR_unbind_req_t . 32
TR_UNI_IND . 20
TR_UNI_IND . 70, 81, 87, 90
TR_uni_ind_t . 70
TR_UNI_REQ . 20
TR_UNI_REQ . 68, 81, 87, 90
TR_uni_req_t . 68
TR_UNSPECIFIED . 66
TR_USER . 66
TRACCES . 29, 38, 44, 47, 51
TRADDRBUSY . 29, 44
TRANS_id 31, 33, 43, 48, 50, 53, 56, 58, 60, 62,

63, 64, 66, 72
TRBAADDR . 29

140 Version 1.1 Rel. 7.20141001

Transaction Interface (TRI) Index

TRBADADDR . 44, 47, 52
TRBADDATA . 44, 47, 51, 65
TRBADF . 44, 51
TRBADFLAG . 38, 44
TRBADID . 34, 65
TRBADOPT . 38, 44, 47, 51
TRBADSEQ . 44, 51
TRI_error . 43
TRI_version . 27, 80, 86
TRNOADDR . 29, 44, 46
TRNOTSUPPORT . 34, 38, 44, 65
TROUTSTATE 29, 32, 38, 44, 47, 51, 61, 65
TRRESADDR . 44, 51
TRS_DATA_XFER 47, 51, 54, 56, 59, 60, 62, 76
TRS_IDLE 31, 32, 46, 47, 49, 57, 60, 62, 64, 65,

67, 69, 71
TRS_UNBND . 29, 31, 36
TRS_UNINIT . 36

TRS_WACK_BREQ . 29, 30
TRS_WACK_CREQ . 46, 75
TRS_WACK_ORDREL . 76
TRS_WACK_UREQ . 32
TRS_WCON_CREQ . 54, 62
TRS_WIND_ORDREL . 76
TRS_WRES_CIND . 49, 51, 75
TRSYSERR 29, 34, 38, 43, 44, 47, 51, 61, 65
TSDU_size . 57

U
UNIX_error . 43

X
XACT_number . 28, 30, 31

2014-10-25 141

	Preface
	Notice
	Abstract
	Purpose
	Intent
	Audience

	Revision History
	Version Control

	ISO 9000 Compliance
	Disclaimer
	U.S. Government Restricted Rights

	Acknowledgements

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, and Abbreviations

	The Transaction Sub-Layer
	Model of the TRI
	TRI Services
	COTS
	CLTS
	Local Management

	TRI Services Definition
	Local Management Services Definition
	Transaction Information Reporting Service
	TR User Bind Service
	TR User Unbind Service
	Receipt Acknowledgement Service
	Options Mangement Service
	Error Acknowledgement Service

	Connection-Oriented Mode Services Definition
	Transaction Initiation Phase
	User Primitives Successful Transaction Establishment
	Provider Primitives Successful Transaction Establishment

	Transaction Data Transfer Phase
	Primitives for Data Transfer

	Transaction Termination Phase
	Primitives for Transaction Termination

	Connectionless Mode Services Definition
	Request and Response Primitives

	TRI Primitives
	Management Primitives
	Transaction Information
	Transaction Information Request
	Transaction Information Acknowledgement

	Transaction Protocol Address Management
	Transaction Bind Request
	Transaction Bind Acknowledgement
	Transaction Unbind Request
	Transaction Protocol Address Request
	Transaction Protocol Address Acknowledgement

	Transaction Options Management
	Transaction Options Management Request
	Transaction Options Management Acknowledgement

	Transaction Error Management
	Transaction Successful Receipt Acknowledgement
	Transaction Error Acknowledgement

	Connection-Oriented Mode Primitives
	Transaction Establishment
	Transaction Begin Request
	Transaction Begin Indication
	Transaction Begin Response
	Transaction Begin Confirmation

	Transaction Data Transfer
	Transaction Continue Request
	Transaction Continue Indication

	Transaction Termination
	Transaction End Request
	Transaction End Indication
	Transaction User Abort Request
	Transaction Abort Indication

	Connectionless Mode Primitives
	Transaction Phase
	Transaction Unidirectional Request
	Transaction Unidirectional Indication
	Transaction Notice Indication

	Diagnostics Requirements
	Non-Fatal Errors
	Fatal Errors

	Transaction Service Interface Sequence of Primitives
	Rules for State Maintenance
	General Rules for State Maintenace
	Connection-Oriented Transaction Service Rules for State Maintenace

	Rules for Precedence of Primitives on a Stream
	General Rules for Precedence of Primitives
	Connection-Oriented Transaction Service Rules for Precedence of Primitives

	Rules for Flushing Queues
	General Rules for Flushing Queues
	Connection-Oriented Transaction Service Rules for Flushing Queues

	Addendum for ITU-T Conformance
	Quality of Service: Model and Description
	QoS Overview

	TRI Primitives: Rules for ITU-T Q.771 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	Supported Services
	Common Transaction Services
	Information Service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Addendum for ANSI Conformance
	Quality of Service: Model and Description
	QoS Overview

	TRI Primitives: Rules for ANSI T1.114 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	Supported Services
	Common Transaction Services
	Information Service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Addendum for ETSI Conformance
	ETSI Quality of Service Model and Description
	QoS Overview

	TRI Primitives: Rules for ETSI ETS 300 287 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	ETSI Supported Services
	Common Transaction Services
	Information service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Mapping TRI Primitives
	Mapping TRI Primitives to ITU-T Q.771
	Mapping TRI Primitives to ANSI T1.114
	Mapping TRI Primitives to ITU-T X.219
	State Mapping
	Primitive Mapping
	A-ASSOCIATE
	A-RELEASE
	A-ABORT
	A-P-ABORT
	A-UNIT-DATA

	Parameter Mapping

	State/Event Tables
	Primitive Precedence Tables
	TRI Header File Listing
	Glossary
	Acronyms
	References
	Licenses
	GNU Affero General Public License
	Preamble
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License

	Index

